Enter a problem...
Algebra Examples
(x-5)2+(y-3)2=29(x−5)2+(y−3)2=29 -x+y=-9
Step 1
Add x to both sides of the equation.
y=-9+x
(x-5)2+(y-3)2=29
Step 2
Step 2.1
Replace all occurrences of y in (x-5)2+(y-3)2=29 with -9+x.
(x-5)2+((-9+x)-3)2=29
y=-9+x
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify (x-5)2+((-9+x)-3)2.
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite (x-5)2 as (x-5)(x-5).
(x-5)(x-5)+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.2
Expand (x-5)(x-5) using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
x(x-5)-5(x-5)+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.2.2
Apply the distributive property.
x⋅x+x⋅-5-5(x-5)+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.2.3
Apply the distributive property.
x⋅x+x⋅-5-5x-5⋅-5+((-9+x)-3)2=29
y=-9+x
x⋅x+x⋅-5-5x-5⋅-5+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply x by x.
x2+x⋅-5-5x-5⋅-5+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.3.1.2
Move -5 to the left of x.
x2-5⋅x-5x-5⋅-5+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.3.1.3
Multiply -5 by -5.
x2-5x-5x+25+((-9+x)-3)2=29
y=-9+x
x2-5x-5x+25+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.3.2
Subtract 5x from -5x.
x2-10x+25+((-9+x)-3)2=29
y=-9+x
x2-10x+25+((-9+x)-3)2=29
y=-9+x
Step 2.2.1.1.4
Subtract 3 from -9.
x2-10x+25+(x-12)2=29
y=-9+x
Step 2.2.1.1.5
Rewrite (x-12)2 as (x-12)(x-12).
x2-10x+25+(x-12)(x-12)=29
y=-9+x
Step 2.2.1.1.6
Expand (x-12)(x-12) using the FOIL Method.
Step 2.2.1.1.6.1
Apply the distributive property.
x2-10x+25+x(x-12)-12(x-12)=29
y=-9+x
Step 2.2.1.1.6.2
Apply the distributive property.
x2-10x+25+x⋅x+x⋅-12-12(x-12)=29
y=-9+x
Step 2.2.1.1.6.3
Apply the distributive property.
x2-10x+25+x⋅x+x⋅-12-12x-12⋅-12=29
y=-9+x
x2-10x+25+x⋅x+x⋅-12-12x-12⋅-12=29
y=-9+x
Step 2.2.1.1.7
Simplify and combine like terms.
Step 2.2.1.1.7.1
Simplify each term.
Step 2.2.1.1.7.1.1
Multiply x by x.
x2-10x+25+x2+x⋅-12-12x-12⋅-12=29
y=-9+x
Step 2.2.1.1.7.1.2
Move -12 to the left of x.
x2-10x+25+x2-12⋅x-12x-12⋅-12=29
y=-9+x
Step 2.2.1.1.7.1.3
Multiply -12 by -12.
x2-10x+25+x2-12x-12x+144=29
y=-9+x
x2-10x+25+x2-12x-12x+144=29
y=-9+x
Step 2.2.1.1.7.2
Subtract 12x from -12x.
x2-10x+25+x2-24x+144=29
y=-9+x
x2-10x+25+x2-24x+144=29
y=-9+x
x2-10x+25+x2-24x+144=29
y=-9+x
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add x2 and x2.
2x2-10x+25-24x+144=29
y=-9+x
Step 2.2.1.2.2
Subtract 24x from -10x.
2x2-34x+25+144=29
y=-9+x
Step 2.2.1.2.3
Add 25 and 144.
2x2-34x+169=29
y=-9+x
2x2-34x+169=29
y=-9+x
2x2-34x+169=29
y=-9+x
2x2-34x+169=29
y=-9+x
2x2-34x+169=29
y=-9+x
Step 3
Step 3.1
Subtract 29 from both sides of the equation.
2x2-34x+169-29=0
y=-9+x
Step 3.2
Subtract 29 from 169.
2x2-34x+140=0
y=-9+x
Step 3.3
Factor the left side of the equation.
Step 3.3.1
Factor 2 out of 2x2-34x+140.
Step 3.3.1.1
Factor 2 out of 2x2.
2(x2)-34x+140=0
y=-9+x
Step 3.3.1.2
Factor 2 out of -34x.
2(x2)+2(-17x)+140=0
y=-9+x
Step 3.3.1.3
Factor 2 out of 140.
2x2+2(-17x)+2⋅70=0
y=-9+x
Step 3.3.1.4
Factor 2 out of 2x2+2(-17x).
2(x2-17x)+2⋅70=0
y=-9+x
Step 3.3.1.5
Factor 2 out of 2(x2-17x)+2⋅70.
2(x2-17x+70)=0
y=-9+x
2(x2-17x+70)=0
y=-9+x
Step 3.3.2
Factor.
Step 3.3.2.1
Factor x2-17x+70 using the AC method.
Step 3.3.2.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 70 and whose sum is -17.
-10,-7
y=-9+x
Step 3.3.2.1.2
Write the factored form using these integers.
2((x-10)(x-7))=0
y=-9+x
2((x-10)(x-7))=0
y=-9+x
Step 3.3.2.2
Remove unnecessary parentheses.
2(x-10)(x-7)=0
y=-9+x
2(x-10)(x-7)=0
y=-9+x
2(x-10)(x-7)=0
y=-9+x
Step 3.4
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x-10=0
x-7=0
y=-9+x
Step 3.5
Set x-10 equal to 0 and solve for x.
Step 3.5.1
Set x-10 equal to 0.
x-10=0
y=-9+x
Step 3.5.2
Add 10 to both sides of the equation.
x=10
y=-9+x
x=10
y=-9+x
Step 3.6
Set x-7 equal to 0 and solve for x.
Step 3.6.1
Set x-7 equal to 0.
x-7=0
y=-9+x
Step 3.6.2
Add 7 to both sides of the equation.
x=7
y=-9+x
x=7
y=-9+x
Step 3.7
The final solution is all the values that make 2(x-10)(x-7)=0 true.
x=10,7
y=-9+x
x=10,7
y=-9+x
Step 4
Step 4.1
Replace all occurrences of x in y=-9+x with 10.
y=-9+10
x=10
Step 4.2
Simplify y=-9+10.
Step 4.2.1
Simplify the left side.
Step 4.2.1.1
Remove parentheses.
y=-9+10
x=10
y=-9+10
x=10
Step 4.2.2
Simplify the right side.
Step 4.2.2.1
Add -9 and 10.
y=1
x=10
y=1
x=10
y=1
x=10
y=1
x=10
Step 5
Step 5.1
Replace all occurrences of x in y=-9+x with 7.
y=-9+7
x=7
Step 5.2
Simplify y=-9+7.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Remove parentheses.
y=-9+7
x=7
y=-9+7
x=7
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Add -9 and 7.
y=-2
x=7
y=-2
x=7
y=-2
x=7
y=-2
x=7
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
(10,1)
(7,-2)
Step 7
The result can be shown in multiple forms.
Point Form:
(10,1),(7,-2)
Equation Form:
x=10,y=1
x=7,y=-2
Step 8