Algebra Examples

Solve Using the Quadratic Formula cube root of 6/7=( cube root of 6)/( cube root of 7)
367=3637367=3637
Step 1
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 1.1
Simplify the left side.
Tap for more steps...
Step 1.1.1
Simplify 367367.
Tap for more steps...
Step 1.1.1.1
Rewrite 367367 as 36373637.
3637=36373637=3637
Step 1.1.1.2
Multiply 36373637 by 372372372372.
3637372372=36373637372372=3637
Step 1.1.1.3
Combine and simplify the denominator.
Tap for more steps...
Step 1.1.1.3.1
Multiply 36373637 by 372372372372.
3637237372=36373637237372=3637
Step 1.1.1.3.2
Raise 3737 to the power of 11.
36372371372=363736372371372=3637
Step 1.1.1.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
36372371+2=363736372371+2=3637
Step 1.1.1.3.4
Add 11 and 22.
36372373=363736372373=3637
Step 1.1.1.3.5
Rewrite 373373 as 77.
Tap for more steps...
Step 1.1.1.3.5.1
Use nax=axnnax=axn to rewrite 3737 as 713713.
36372(713)3=363736372(713)3=3637
Step 1.1.1.3.5.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
363727133=3637363727133=3637
Step 1.1.1.3.5.3
Combine 13 and 3.
36372733=3637
Step 1.1.1.3.5.4
Cancel the common factor of 3.
Tap for more steps...
Step 1.1.1.3.5.4.1
Cancel the common factor.
36372733=3637
Step 1.1.1.3.5.4.2
Rewrite the expression.
3637271=3637
3637271=3637
Step 1.1.1.3.5.5
Evaluate the exponent.
363727=3637
363727=3637
363727=3637
Step 1.1.1.4
Simplify the numerator.
Tap for more steps...
Step 1.1.1.4.1
Rewrite 372 as 372.
363727=3637
Step 1.1.1.4.2
Raise 7 to the power of 2.
363497=3637
363497=3637
Step 1.1.1.5
Simplify the numerator.
Tap for more steps...
Step 1.1.1.5.1
Combine using the product rule for radicals.
36497=3637
Step 1.1.1.5.2
Multiply 6 by 49.
32947=3637
32947=3637
32947=3637
32947=3637
Step 1.2
Simplify the right side.
Tap for more steps...
Step 1.2.1
Simplify 3637.
Tap for more steps...
Step 1.2.1.1
Multiply 3637 by 372372.
32947=3637372372
Step 1.2.1.2
Combine and simplify the denominator.
Tap for more steps...
Step 1.2.1.2.1
Multiply 3637 by 372372.
32947=3637237372
Step 1.2.1.2.2
Raise 37 to the power of 1.
32947=36372371372
Step 1.2.1.2.3
Use the power rule aman=am+n to combine exponents.
32947=36372371+2
Step 1.2.1.2.4
Add 1 and 2.
32947=36372373
Step 1.2.1.2.5
Rewrite 373 as 7.
Tap for more steps...
Step 1.2.1.2.5.1
Use nax=axn to rewrite 37 as 713.
32947=36372(713)3
Step 1.2.1.2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
32947=363727133
Step 1.2.1.2.5.3
Combine 13 and 3.
32947=36372733
Step 1.2.1.2.5.4
Cancel the common factor of 3.
Tap for more steps...
Step 1.2.1.2.5.4.1
Cancel the common factor.
32947=36372733
Step 1.2.1.2.5.4.2
Rewrite the expression.
32947=3637271
32947=3637271
Step 1.2.1.2.5.5
Evaluate the exponent.
32947=363727
32947=363727
32947=363727
Step 1.2.1.3
Simplify the numerator.
Tap for more steps...
Step 1.2.1.3.1
Rewrite 372 as 372.
32947=363727
Step 1.2.1.3.2
Raise 7 to the power of 2.
32947=363497
32947=363497
Step 1.2.1.4
Simplify the numerator.
Tap for more steps...
Step 1.2.1.4.1
Combine using the product rule for radicals.
32947=36497
Step 1.2.1.4.2
Multiply 6 by 49.
32947=32947
32947=32947
32947=32947
32947=32947
Step 1.3
Subtract 32947 from both sides of the equation.
32947-32947=0
Step 1.4
Simplify 32947-32947.
Tap for more steps...
Step 1.4.1
Combine the numerators over the common denominator.
3294-32947=0
Step 1.4.2
Subtract 3294 from 3294.
07=0
Step 1.4.3
Divide 0 by 7.
0=0
0=0
0=0
Step 2
Since 0=0, the equation will always be true.
Always true
 [x2  12  π  xdx ]