Enter a problem...
Algebra Examples
3√67=3√63√73√67=3√63√7
Step 1
Step 1.1
Simplify the left side.
Step 1.1.1
Simplify 3√673√67.
Step 1.1.1.1
Rewrite 3√673√67 as 3√63√73√63√7.
3√63√7=3√63√73√63√7=3√63√7
Step 1.1.1.2
Multiply 3√63√73√63√7 by 3√723√723√723√72.
3√63√7⋅3√723√72=3√63√73√63√7⋅3√723√72=3√63√7
Step 1.1.1.3
Combine and simplify the denominator.
Step 1.1.1.3.1
Multiply 3√63√73√63√7 by 3√723√723√723√72.
3√63√723√73√72=3√63√73√63√723√73√72=3√63√7
Step 1.1.1.3.2
Raise 3√73√7 to the power of 11.
3√63√723√713√72=3√63√73√63√723√713√72=3√63√7
Step 1.1.1.3.3
Use the power rule aman=am+naman=am+n to combine exponents.
3√63√723√71+2=3√63√73√63√723√71+2=3√63√7
Step 1.1.1.3.4
Add 11 and 22.
3√63√723√73=3√63√73√63√723√73=3√63√7
Step 1.1.1.3.5
Rewrite 3√733√73 as 77.
Step 1.1.1.3.5.1
Use n√ax=axnn√ax=axn to rewrite 3√73√7 as 713713.
3√63√72(713)3=3√63√73√63√72(713)3=3√63√7
Step 1.1.1.3.5.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
3√63√72713⋅3=3√63√73√63√72713⋅3=3√63√7
Step 1.1.1.3.5.3
Combine 13 and 3.
3√63√72733=3√63√7
Step 1.1.1.3.5.4
Cancel the common factor of 3.
Step 1.1.1.3.5.4.1
Cancel the common factor.
3√63√72733=3√63√7
Step 1.1.1.3.5.4.2
Rewrite the expression.
3√63√7271=3√63√7
3√63√7271=3√63√7
Step 1.1.1.3.5.5
Evaluate the exponent.
3√63√727=3√63√7
3√63√727=3√63√7
3√63√727=3√63√7
Step 1.1.1.4
Simplify the numerator.
Step 1.1.1.4.1
Rewrite 3√72 as 3√72.
3√63√727=3√63√7
Step 1.1.1.4.2
Raise 7 to the power of 2.
3√63√497=3√63√7
3√63√497=3√63√7
Step 1.1.1.5
Simplify the numerator.
Step 1.1.1.5.1
Combine using the product rule for radicals.
3√6⋅497=3√63√7
Step 1.1.1.5.2
Multiply 6 by 49.
3√2947=3√63√7
3√2947=3√63√7
3√2947=3√63√7
3√2947=3√63√7
Step 1.2
Simplify the right side.
Step 1.2.1
Simplify 3√63√7.
Step 1.2.1.1
Multiply 3√63√7 by 3√723√72.
3√2947=3√63√7⋅3√723√72
Step 1.2.1.2
Combine and simplify the denominator.
Step 1.2.1.2.1
Multiply 3√63√7 by 3√723√72.
3√2947=3√63√723√73√72
Step 1.2.1.2.2
Raise 3√7 to the power of 1.
3√2947=3√63√723√713√72
Step 1.2.1.2.3
Use the power rule aman=am+n to combine exponents.
3√2947=3√63√723√71+2
Step 1.2.1.2.4
Add 1 and 2.
3√2947=3√63√723√73
Step 1.2.1.2.5
Rewrite 3√73 as 7.
Step 1.2.1.2.5.1
Use n√ax=axn to rewrite 3√7 as 713.
3√2947=3√63√72(713)3
Step 1.2.1.2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
3√2947=3√63√72713⋅3
Step 1.2.1.2.5.3
Combine 13 and 3.
3√2947=3√63√72733
Step 1.2.1.2.5.4
Cancel the common factor of 3.
Step 1.2.1.2.5.4.1
Cancel the common factor.
3√2947=3√63√72733
Step 1.2.1.2.5.4.2
Rewrite the expression.
3√2947=3√63√7271
3√2947=3√63√7271
Step 1.2.1.2.5.5
Evaluate the exponent.
3√2947=3√63√727
3√2947=3√63√727
3√2947=3√63√727
Step 1.2.1.3
Simplify the numerator.
Step 1.2.1.3.1
Rewrite 3√72 as 3√72.
3√2947=3√63√727
Step 1.2.1.3.2
Raise 7 to the power of 2.
3√2947=3√63√497
3√2947=3√63√497
Step 1.2.1.4
Simplify the numerator.
Step 1.2.1.4.1
Combine using the product rule for radicals.
3√2947=3√6⋅497
Step 1.2.1.4.2
Multiply 6 by 49.
3√2947=3√2947
3√2947=3√2947
3√2947=3√2947
3√2947=3√2947
Step 1.3
Subtract 3√2947 from both sides of the equation.
3√2947-3√2947=0
Step 1.4
Simplify 3√2947-3√2947.
Step 1.4.1
Combine the numerators over the common denominator.
3√294-3√2947=0
Step 1.4.2
Subtract 3√294 from 3√294.
07=0
Step 1.4.3
Divide 0 by 7.
0=0
0=0
0=0
Step 2
Since 0=0, the equation will always be true.
Always true