Enter a problem...
Algebra Examples
√27x3y+x√48xy√27x3y+x√48xy
Step 1
Step 1.1
Rewrite 27x3y27x3y as (3x)2⋅(3xy)(3x)2⋅(3xy).
Step 1.1.1
Factor 99 out of 2727.
√9(3)x3y+x√48xy√9(3)x3y+x√48xy
Step 1.1.2
Rewrite 99 as 3232.
√32⋅3x3y+x√48xy√32⋅3x3y+x√48xy
Step 1.1.3
Factor out x2x2.
√32⋅3(x2x)y+x√48xy√32⋅3(x2x)y+x√48xy
Step 1.1.4
Move 33.
√32x2⋅3xy+x√48xy√32x2⋅3xy+x√48xy
Step 1.1.5
Rewrite 32x232x2 as (3x)2(3x)2.
√(3x)2⋅3xy+x√48xy√(3x)2⋅3xy+x√48xy
Step 1.1.6
Add parentheses.
√(3x)2⋅3(xy)+x√48xy√(3x)2⋅3(xy)+x√48xy
Step 1.1.7
Add parentheses.
√(3x)2⋅(3xy)+x√48xy√(3x)2⋅(3xy)+x√48xy
√(3x)2⋅(3xy)+x√48xy√(3x)2⋅(3xy)+x√48xy
Step 1.2
Pull terms out from under the radical.
3x√3xy+x√48xy3x√3xy+x√48xy
Step 1.3
Rewrite 48xy as (22)2⋅(3xy).
Step 1.3.1
Factor 16 out of 48.
3x√3xy+x√16(3)xy
Step 1.3.2
Rewrite 16 as 42.
3x√3xy+x√42⋅3xy
Step 1.3.3
Rewrite 4 as 22.
3x√3xy+x√(22)2⋅3xy
Step 1.3.4
Add parentheses.
3x√3xy+x√(22)2⋅3(xy)
Step 1.3.5
Add parentheses.
3x√3xy+x√(22)2⋅(3xy)
3x√3xy+x√(22)2⋅(3xy)
Step 1.4
Pull terms out from under the radical.
3x√3xy+x(22√3xy)
Step 1.5
Rewrite using the commutative property of multiplication.
3x√3xy+22x√3xy
Step 1.6
Raise 2 to the power of 2.
3x√3xy+4x√3xy
3x√3xy+4x√3xy
Step 2
Add 3x√3xy and 4x√3xy.
7x√3xy