Enter a problem...
Algebra Examples
Step 1
Interchange the variables.
Step 2
Step 2.1
Rewrite the equation as .
Step 2.2
Divide each term in by and simplify.
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor.
Step 2.2.2.2
Divide by .
Step 2.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 2.4
Simplify the exponent.
Step 2.4.1
Simplify the left side.
Step 2.4.1.1
Simplify .
Step 2.4.1.1.1
Multiply the exponents in .
Step 2.4.1.1.1.1
Apply the power rule and multiply exponents, .
Step 2.4.1.1.1.2
Cancel the common factor of .
Step 2.4.1.1.1.2.1
Cancel the common factor.
Step 2.4.1.1.1.2.2
Rewrite the expression.
Step 2.4.1.1.2
Simplify.
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Apply the product rule to .
Step 2.4.2.1.2
Raise to the power of .
Step 2.5
Subtract from both sides of the equation.
Step 3
Replace with to show the final answer.
Step 4
Step 4.1
To verify the inverse, check if and .
Step 4.2
Evaluate .
Step 4.2.1
Set up the composite result function.
Step 4.2.2
Evaluate by substituting in the value of into .
Step 4.2.3
Simplify each term.
Step 4.2.3.1
Simplify the numerator.
Step 4.2.3.1.1
Apply the product rule to .
Step 4.2.3.1.2
Raise to the power of .
Step 4.2.3.1.3
Multiply the exponents in .
Step 4.2.3.1.3.1
Apply the power rule and multiply exponents, .
Step 4.2.3.1.3.2
Cancel the common factor of .
Step 4.2.3.1.3.2.1
Cancel the common factor.
Step 4.2.3.1.3.2.2
Rewrite the expression.
Step 4.2.3.1.4
Simplify.
Step 4.2.3.2
Cancel the common factor of .
Step 4.2.3.2.1
Cancel the common factor.
Step 4.2.3.2.2
Divide by .
Step 4.2.4
Combine the opposite terms in .
Step 4.2.4.1
Subtract from .
Step 4.2.4.2
Add and .
Step 4.3
Evaluate .
Step 4.3.1
Set up the composite result function.
Step 4.3.2
Evaluate by substituting in the value of into .
Step 4.3.3
Simplify by adding terms.
Step 4.3.3.1
Combine the opposite terms in .
Step 4.3.3.1.1
Add and .
Step 4.3.3.1.2
Add and .
Step 4.3.3.2
Apply the product rule to .
Step 4.3.4
Simplify the numerator.
Step 4.3.4.1
Multiply the exponents in .
Step 4.3.4.1.1
Apply the power rule and multiply exponents, .
Step 4.3.4.1.2
Cancel the common factor of .
Step 4.3.4.1.2.1
Cancel the common factor.
Step 4.3.4.1.2.2
Rewrite the expression.
Step 4.3.4.2
Simplify.
Step 4.3.5
Simplify the denominator.
Step 4.3.5.1
Rewrite as .
Step 4.3.5.2
Apply the power rule and multiply exponents, .
Step 4.3.5.3
Cancel the common factor of .
Step 4.3.5.3.1
Cancel the common factor.
Step 4.3.5.3.2
Rewrite the expression.
Step 4.3.5.4
Evaluate the exponent.
Step 4.3.6
Cancel the common factor of .
Step 4.3.6.1
Cancel the common factor.
Step 4.3.6.2
Rewrite the expression.
Step 4.4
Since and , then is the inverse of .