Enter a problem...
Algebra Examples
3x3+7=2163x3+7=216
Step 1
Step 1.1
Subtract 77 from both sides of the equation.
3x3=216-73x3=216−7
Step 1.2
Subtract 77 from 216216.
3x3=2093x3=209
3x3=2093x3=209
Step 2
Step 2.1
Divide each term in 3x3=2093x3=209 by 33.
3x33=20933x33=2093
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 33.
Step 2.2.1.1
Cancel the common factor.
3x33=2093
Step 2.2.1.2
Divide x3 by 1.
x3=2093
x3=2093
x3=2093
x3=2093
Step 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=3√2093
Step 4
Step 4.1
Rewrite 3√2093 as 3√2093√3.
x=3√2093√3
Step 4.2
Multiply 3√2093√3 by 3√323√32.
x=3√2093√3⋅3√323√32
Step 4.3
Combine and simplify the denominator.
Step 4.3.1
Multiply 3√2093√3 by 3√323√32.
x=3√2093√323√33√32
Step 4.3.2
Raise 3√3 to the power of 1.
x=3√2093√323√313√32
Step 4.3.3
Use the power rule aman=am+n to combine exponents.
x=3√2093√323√31+2
Step 4.3.4
Add 1 and 2.
x=3√2093√323√33
Step 4.3.5
Rewrite 3√33 as 3.
Step 4.3.5.1
Use n√ax=axn to rewrite 3√3 as 313.
x=3√2093√32(313)3
Step 4.3.5.2
Apply the power rule and multiply exponents, (am)n=amn.
x=3√2093√32313⋅3
Step 4.3.5.3
Combine 13 and 3.
x=3√2093√32333
Step 4.3.5.4
Cancel the common factor of 3.
Step 4.3.5.4.1
Cancel the common factor.
x=3√2093√32333
Step 4.3.5.4.2
Rewrite the expression.
x=3√2093√3231
x=3√2093√3231
Step 4.3.5.5
Evaluate the exponent.
x=3√2093√323
x=3√2093√323
x=3√2093√323
Step 4.4
Simplify the numerator.
Step 4.4.1
Rewrite 3√32 as 3√32.
x=3√2093√323
Step 4.4.2
Raise 3 to the power of 2.
x=3√2093√93
x=3√2093√93
Step 4.5
Simplify the numerator.
Step 4.5.1
Combine using the product rule for radicals.
x=3√209⋅93
Step 4.5.2
Multiply 209 by 9.
x=3√18813
x=3√18813
x=3√18813
Step 5
The result can be shown in multiple forms.
Exact Form:
x=3√18813
Decimal Form:
x=4.11473316…