Enter a problem...
Algebra Examples
ac+2bc-6ab-3a2=0ac+2bc−6ab−3a2=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=-3a=−3, b=c-6bb=c−6b, and c=2bcc=2bc into the quadratic formula and solve for aa.
-(c-6b)±√(c-6b)2-4⋅(-3⋅(2bc))2⋅-3−(c−6b)±√(c−6b)2−4⋅(−3⋅(2bc))2⋅−3
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Apply the distributive property.
a=-c-(-6b)±√(c-6b)2-4⋅-3⋅(2bc)2⋅-3a=−c−(−6b)±√(c−6b)2−4⋅−3⋅(2bc)2⋅−3
Step 3.1.2
Multiply -6−6 by -1−1.
a=-c+6b±√(c-6b)2-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√(c−6b)2−4⋅−3⋅(2bc)2⋅−3
Step 3.1.3
Rewrite (c-6b)2(c−6b)2 as (c-6b)(c-6b)(c−6b)(c−6b).
a=-c+6b±√(c-6b)(c-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√(c−6b)(c−6b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.4
Expand (c-6b)(c-6b)(c−6b)(c−6b) using the FOIL Method.
Step 3.1.4.1
Apply the distributive property.
a=-c+6b±√c(c-6b)-6b(c-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c(c−6b)−6b(c−6b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.4.2
Apply the distributive property.
a=-c+6b±√c⋅c+c(-6b)-6b(c-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c⋅c+c(−6b)−6b(c−6b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.4.3
Apply the distributive property.
a=-c+6b±√c⋅c+c(-6b)-6bc-6b(-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c⋅c+c(−6b)−6bc−6b(−6b)−4⋅−3⋅(2bc)2⋅−3
a=-c+6b±√c⋅c+c(-6b)-6bc-6b(-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c⋅c+c(−6b)−6bc−6b(−6b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.5
Simplify and combine like terms.
Step 3.1.5.1
Simplify each term.
Step 3.1.5.1.1
Multiply cc by cc.
a=-c+6b±√c2+c(-6b)-6bc-6b(-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c2+c(−6b)−6bc−6b(−6b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.5.1.2
Rewrite using the commutative property of multiplication.
a=-c+6b±√c2-6cb-6bc-6b(-6b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c2−6cb−6bc−6b(−6b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.5.1.3
Rewrite using the commutative property of multiplication.
a=-c+6b±√c2-6cb-6bc-6⋅(-6b⋅b)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c2−6cb−6bc−6⋅(−6b⋅b)−4⋅−3⋅(2bc)2⋅−3
Step 3.1.5.1.4
Multiply bb by bb by adding the exponents.
Step 3.1.5.1.4.1
Move bb.
a=-c+6b±√c2-6cb-6bc-6⋅(-6(b⋅b))-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c2−6cb−6bc−6⋅(−6(b⋅b))−4⋅−3⋅(2bc)2⋅−3
Step 3.1.5.1.4.2
Multiply bb by bb.
a=-c+6b±√c2-6cb-6bc-6⋅(-6b2)-4⋅-3⋅(2bc)2⋅-3a=−c+6b±√c2−6cb−6bc−6⋅(−6b2)−4⋅−3⋅(2bc)2⋅−3
a=-c+6b±√c2-6cb-6bc-6⋅(-6b2)-4⋅-3⋅(2bc)2⋅-3
Step 3.1.5.1.5
Multiply -6 by -6.
a=-c+6b±√c2-6cb-6bc+36b2-4⋅-3⋅(2bc)2⋅-3
a=-c+6b±√c2-6cb-6bc+36b2-4⋅-3⋅(2bc)2⋅-3
Step 3.1.5.2
Subtract 6bc from -6cb.
Step 3.1.5.2.1
Move c.
a=-c+6b±√c2-6bc-6bc+36b2-4⋅-3⋅(2bc)2⋅-3
Step 3.1.5.2.2
Subtract 6bc from -6bc.
a=-c+6b±√c2-12bc+36b2-4⋅-3⋅(2bc)2⋅-3
a=-c+6b±√c2-12bc+36b2-4⋅-3⋅(2bc)2⋅-3
a=-c+6b±√c2-12bc+36b2-4⋅-3⋅(2bc)2⋅-3
Step 3.1.6
Multiply -4⋅-3⋅2.
Step 3.1.6.1
Multiply -4 by -3.
a=-c+6b±√c2-12bc+36b2+12⋅(2bc)2⋅-3
Step 3.1.6.2
Multiply 12 by 2.
a=-c+6b±√c2-12bc+36b2+24bc2⋅-3
a=-c+6b±√c2-12bc+36b2+24bc2⋅-3
Step 3.1.7
Add -12bc and 24bc.
a=-c+6b±√c2+36b2+12bc2⋅-3
Step 3.1.8
Factor using the perfect square rule.
Step 3.1.8.1
Rearrange terms.
a=-c+6b±√c2+12bc+36b22⋅-3
Step 3.1.8.2
Rewrite 36b2 as (6b)2.
a=-c+6b±√c2+12bc+(6b)22⋅-3
Step 3.1.8.3
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
12bc=2⋅c⋅(6b)
Step 3.1.8.4
Rewrite the polynomial.
a=-c+6b±√c2+2⋅c⋅(6b)+(6b)22⋅-3
Step 3.1.8.5
Factor using the perfect square trinomial rule a2+2ab+b2=(a+b)2, where a=c and b=6b.
a=-c+6b±√(c+6b)22⋅-3
a=-c+6b±√(c+6b)22⋅-3
Step 3.1.9
Pull terms out from under the radical, assuming positive real numbers.
a=-c+6b±(c+6b)2⋅-3
a=-c+6b±(c+6b)2⋅-3
Step 3.2
Multiply 2 by -3.
a=-c+6b±(c+6b)-6
Step 3.3
Simplify -c+6b±(c+6b)-6.
a=c-6b±(-(-c-6b))6
Step 3.4
Simplify the numerator.
Step 3.4.1
Apply the distributive property.
a=c-6b±(c-(-6b))6
Step 3.4.2
Multiply --c.
Step 3.4.2.1
Multiply -1 by -1.
a=c-6b±(1c-(-6b))6
Step 3.4.2.2
Multiply c by 1.
a=c-6b±(c-(-6b))6
a=c-6b±(c-(-6b))6
Step 3.4.3
Multiply -6 by -1.
a=c-6b±(c+6b)6
a=c-6b±(c+6b)6
a=c-6b±(c+6b)6
Step 4
The final answer is the combination of both solutions.
a=c3
a=-2b