Algebra Examples

Solve for x log base 3 of 3x+3- log base 3 of x-1=2
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Use the quotient property of logarithms, .
Step 1.2
Factor out of .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Factor out of .
Step 1.2.3
Factor out of .
Step 2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3
Cross multiply to remove the fraction.
Step 4
Simplify .
Tap for more steps...
Step 4.1
Raise to the power of .
Step 4.2
Apply the distributive property.
Step 4.3
Multiply by .
Step 5
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 5.1
Subtract from both sides of the equation.
Step 5.2
Simplify each term.
Tap for more steps...
Step 5.2.1
Apply the distributive property.
Step 5.2.2
Multiply by .
Step 5.3
Subtract from .
Step 6
Factor out of .
Tap for more steps...
Step 6.1
Factor out of .
Step 6.2
Factor out of .
Step 6.3
Factor out of .
Step 7
Divide each term in by and simplify.
Tap for more steps...
Step 7.1
Divide each term in by .
Step 7.2
Simplify the left side.
Tap for more steps...
Step 7.2.1
Cancel the common factor of .
Tap for more steps...
Step 7.2.1.1
Cancel the common factor.
Step 7.2.1.2
Divide by .
Step 7.3
Simplify the right side.
Tap for more steps...
Step 7.3.1
Divide by .
Step 8
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 8.1
Subtract from both sides of the equation.
Step 8.2
Subtract from .
Step 9
Divide each term in by and simplify.
Tap for more steps...
Step 9.1
Divide each term in by .
Step 9.2
Simplify the left side.
Tap for more steps...
Step 9.2.1
Cancel the common factor of .
Tap for more steps...
Step 9.2.1.1
Cancel the common factor.
Step 9.2.1.2
Divide by .
Step 9.3
Simplify the right side.
Tap for more steps...
Step 9.3.1
Divide by .