Algebra Examples

Divide Using Long Polynomial Division (10x^5+x^3+5x^2-2x-2)÷(5x^2-2)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+-+++--
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
+-+++--
Step 3
Multiply the new quotient term by the divisor.
+-+++--
++-
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
+-+++--
--+
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-+++--
--+
+
Step 6
Pull the next term from the original dividend down into the current dividend.
+-+++--
--+
++-
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
++
+-+++--
--+
++-
Step 8
Multiply the new quotient term by the divisor.
++
+-+++--
--+
++-
++-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
++
+-+++--
--+
++-
--+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++
+-+++--
--+
++-
--+
++
Step 11
Pull the next term from the original dividend down into the current dividend.
++
+-+++--
--+
++-
--+
++-
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
+++
+-+++--
--+
++-
--+
++-
Step 13
Multiply the new quotient term by the divisor.
+++
+-+++--
--+
++-
--+
++-
++-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
+++
+-+++--
--+
++-
--+
++-
--+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+++
+-+++--
--+
++-
--+
++-
--+
Step 16
Since the remander is , the final answer is the quotient.