Enter a problem...
Algebra Examples
f(x)=2(x-6)13+10f(x)=2(x−6)13+10
Step 1
Write f(x)=2(x-6)13+10f(x)=2(x−6)13+10 as an equation.
y=2(x-6)13+10
Step 2
Interchange the variables.
x=2(y-6)13+10
Step 3
Step 3.1
Rewrite the equation as 2(y-6)13+10=x.
2(y-6)13+10=x
Step 3.2
Subtract 10 from both sides of the equation.
2(y-6)13=x-10
Step 3.3
Raise each side of the equation to the power of 3 to eliminate the fractional exponent on the left side.
(2(y-6)13)3=(x-10)3
Step 3.4
Simplify the exponent.
Step 3.4.1
Simplify the left side.
Step 3.4.1.1
Simplify (2(y-6)13)3.
Step 3.4.1.1.1
Apply the product rule to 2(y-6)13.
23((y-6)13)3=(x-10)3
Step 3.4.1.1.2
Raise 2 to the power of 3.
8((y-6)13)3=(x-10)3
Step 3.4.1.1.3
Multiply the exponents in ((y-6)13)3.
Step 3.4.1.1.3.1
Apply the power rule and multiply exponents, (am)n=amn.
8(y-6)13⋅3=(x-10)3
Step 3.4.1.1.3.2
Cancel the common factor of 3.
Step 3.4.1.1.3.2.1
Cancel the common factor.
8(y-6)13⋅3=(x-10)3
Step 3.4.1.1.3.2.2
Rewrite the expression.
8(y-6)1=(x-10)3
8(y-6)1=(x-10)3
8(y-6)1=(x-10)3
Step 3.4.1.1.4
Simplify.
8(y-6)=(x-10)3
Step 3.4.1.1.5
Apply the distributive property.
8y+8⋅-6=(x-10)3
Step 3.4.1.1.6
Multiply 8 by -6.
8y-48=(x-10)3
8y-48=(x-10)3
8y-48=(x-10)3
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify (x-10)3.
Step 3.4.2.1.1
Use the Binomial Theorem.
8y-48=x3+3x2⋅-10+3x(-10)2+(-10)3
Step 3.4.2.1.2
Simplify each term.
Step 3.4.2.1.2.1
Multiply -10 by 3.
8y-48=x3-30x2+3x(-10)2+(-10)3
Step 3.4.2.1.2.2
Raise -10 to the power of 2.
8y-48=x3-30x2+3x⋅100+(-10)3
Step 3.4.2.1.2.3
Multiply 100 by 3.
8y-48=x3-30x2+300x+(-10)3
Step 3.4.2.1.2.4
Raise -10 to the power of 3.
8y-48=x3-30x2+300x-1000
8y-48=x3-30x2+300x-1000
8y-48=x3-30x2+300x-1000
8y-48=x3-30x2+300x-1000
8y-48=x3-30x2+300x-1000
Step 3.5
Solve for y.
Step 3.5.1
Move all terms not containing y to the right side of the equation.
Step 3.5.1.1
Add 48 to both sides of the equation.
8y=x3-30x2+300x-1000+48
Step 3.5.1.2
Add -1000 and 48.
8y=x3-30x2+300x-952
8y=x3-30x2+300x-952
Step 3.5.2
Divide each term in 8y=x3-30x2+300x-952 by 8 and simplify.
Step 3.5.2.1
Divide each term in 8y=x3-30x2+300x-952 by 8.
8y8=x38+-30x28+300x8+-9528
Step 3.5.2.2
Simplify the left side.
Step 3.5.2.2.1
Cancel the common factor of 8.
Step 3.5.2.2.1.1
Cancel the common factor.
8y8=x38+-30x28+300x8+-9528
Step 3.5.2.2.1.2
Divide y by 1.
y=x38+-30x28+300x8+-9528
y=x38+-30x28+300x8+-9528
y=x38+-30x28+300x8+-9528
Step 3.5.2.3
Simplify the right side.
Step 3.5.2.3.1
Simplify each term.
Step 3.5.2.3.1.1
Cancel the common factor of -30 and 8.
Step 3.5.2.3.1.1.1
Factor 2 out of -30x2.
y=x38+2(-15x2)8+300x8+-9528
Step 3.5.2.3.1.1.2
Cancel the common factors.
Step 3.5.2.3.1.1.2.1
Factor 2 out of 8.
y=x38+2(-15x2)2(4)+300x8+-9528
Step 3.5.2.3.1.1.2.2
Cancel the common factor.
y=x38+2(-15x2)2⋅4+300x8+-9528
Step 3.5.2.3.1.1.2.3
Rewrite the expression.
y=x38+-15x24+300x8+-9528
y=x38+-15x24+300x8+-9528
y=x38+-15x24+300x8+-9528
Step 3.5.2.3.1.2
Move the negative in front of the fraction.
y=x38-15x24+300x8+-9528
Step 3.5.2.3.1.3
Cancel the common factor of 300 and 8.
Step 3.5.2.3.1.3.1
Factor 4 out of 300x.
y=x38-15x24+4(75x)8+-9528
Step 3.5.2.3.1.3.2
Cancel the common factors.
Step 3.5.2.3.1.3.2.1
Factor 4 out of 8.
y=x38-15x24+4(75x)4(2)+-9528
Step 3.5.2.3.1.3.2.2
Cancel the common factor.
y=x38-15x24+4(75x)4⋅2+-9528
Step 3.5.2.3.1.3.2.3
Rewrite the expression.
y=x38-15x24+75x2+-9528
y=x38-15x24+75x2+-9528
y=x38-15x24+75x2+-9528
Step 3.5.2.3.1.4
Divide -952 by 8.
y=x38-15x24+75x2-119
y=x38-15x24+75x2-119
y=x38-15x24+75x2-119
y=x38-15x24+75x2-119
y=x38-15x24+75x2-119
y=x38-15x24+75x2-119
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=x38-15x24+75x2-119
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(2(x-6)13+10) by substituting in the value of f into f-1.
f-1(2(x-6)13+10)=(2(x-6)13+10)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Simplify the numerator.
Step 5.2.3.1.1
Factor 2 out of 2(x-6)13+10.
Step 5.2.3.1.1.1
Factor 2 out of 2(x-6)13.
f-1(2(x-6)13+10)=(2((x-6)13)+10)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.1.1.2
Factor 2 out of 10.
f-1(2(x-6)13+10)=(2(x-6)13+2⋅5)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.1.1.3
Factor 2 out of 2(x-6)13+2⋅5.
f-1(2(x-6)13+10)=(2((x-6)13+5))38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=(2((x-6)13+5))38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.1.2
Apply the product rule to 2((x-6)13+5).
f-1(2(x-6)13+10)=23((x-6)13+5)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.1.3
Raise 2 to the power of 3.
f-1(2(x-6)13+10)=8((x-6)13+5)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=8((x-6)13+5)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.2
Cancel the common factor.
f-1(2(x-6)13+10)=8((x-6)13+5)38-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.3
Divide ((x-6)13+5)3 by 1.
f-1(2(x-6)13+10)=((x-6)13+5)3-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.4
Use the Binomial Theorem.
f-1(2(x-6)13+10)=((x-6)13)3+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5
Simplify each term.
Step 5.2.3.5.1
Multiply the exponents in ((x-6)13)3.
Step 5.2.3.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
f-1(2(x-6)13+10)=(x-6)13⋅3+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.1.2
Cancel the common factor of 3.
Step 5.2.3.5.1.2.1
Cancel the common factor.
f-1(2(x-6)13+10)=(x-6)13⋅3+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.1.2.2
Rewrite the expression.
f-1(2(x-6)13+10)=(x-6)+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=(x-6)+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=(x-6)+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.2
Simplify.
f-1(2(x-6)13+10)=x-6+3((x-6)13)2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.3
Multiply the exponents in ((x-6)13)2.
Step 5.2.3.5.3.1
Apply the power rule and multiply exponents, (am)n=amn.
f-1(2(x-6)13+10)=x-6+3(x-6)13⋅2⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.3.2
Combine 13 and 2.
f-1(2(x-6)13+10)=x-6+3(x-6)23⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x-6+3(x-6)23⋅5+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.4
Multiply 5 by 3.
f-1(2(x-6)13+10)=x-6+15(x-6)23+3(x-6)13⋅52+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.5
Raise 5 to the power of 2.
f-1(2(x-6)13+10)=x-6+15(x-6)23+3(x-6)13⋅25+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.6
Multiply 25 by 3.
f-1(2(x-6)13+10)=x-6+15(x-6)23+75(x-6)13+53-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.5.7
Raise 5 to the power of 3.
f-1(2(x-6)13+10)=x-6+15(x-6)23+75(x-6)13+125-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x-6+15(x-6)23+75(x-6)13+125-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.6
Add -6 and 125.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(2(x-6)13+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.7
Simplify the numerator.
Step 5.2.3.7.1
Factor 2 out of 2(x-6)13+10.
Step 5.2.3.7.1.1
Factor 2 out of 2(x-6)13.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(2((x-6)13)+10)24+75(2(x-6)13+10)2-119
Step 5.2.3.7.1.2
Factor 2 out of 10.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(2(x-6)13+2⋅5)24+75(2(x-6)13+10)2-119
Step 5.2.3.7.1.3
Factor 2 out of 2(x-6)13+2⋅5.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(2((x-6)13+5))24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(2((x-6)13+5))24+75(2(x-6)13+10)2-119
Step 5.2.3.7.2
Apply the product rule to 2((x-6)13+5).
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15⋅(22((x-6)13+5)2)4+75(2(x-6)13+10)2-119
Step 5.2.3.7.3
Raise 2 to the power of 2.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15⋅(4((x-6)13+5)2)4+75(2(x-6)13+10)2-119
Step 5.2.3.7.4
Multiply 15 by 4.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-60((x-6)13+5)24+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-60((x-6)13+5)24+75(2(x-6)13+10)2-119
Step 5.2.3.8
Factor 4 out of 60((x-6)13+5)2.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-4(15((x-6)13+5)2)4+75(2(x-6)13+10)2-119
Step 5.2.3.9
Cancel the common factors.
Step 5.2.3.9.1
Factor 4 out of 4.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-4(15((x-6)13+5)2)4(1)+75(2(x-6)13+10)2-119
Step 5.2.3.9.2
Cancel the common factor.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-4(15((x-6)13+5)2)4⋅1+75(2(x-6)13+10)2-119
Step 5.2.3.9.3
Rewrite the expression.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15((x-6)13+5)21+75(2(x-6)13+10)2-119
Step 5.2.3.9.4
Divide 15((x-6)13+5)2 by 1.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13+5)2)+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13+5)2)+75(2(x-6)13+10)2-119
Step 5.2.3.10
Rewrite ((x-6)13+5)2 as ((x-6)13+5)((x-6)13+5).
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15(((x-6)13+5)((x-6)13+5)))+75(2(x-6)13+10)2-119
Step 5.2.3.11
Expand ((x-6)13+5)((x-6)13+5) using the FOIL Method.
Step 5.2.3.11.1
Apply the distributive property.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13((x-6)13+5)+5((x-6)13+5)))+75(2(x-6)13+10)2-119
Step 5.2.3.11.2
Apply the distributive property.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13(x-6)13+(x-6)13⋅5+5((x-6)13+5)))+75(2(x-6)13+10)2-119
Step 5.2.3.11.3
Apply the distributive property.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13(x-6)13+(x-6)13⋅5+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13(x-6)13+(x-6)13⋅5+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
Step 5.2.3.12
Simplify and combine like terms.
Step 5.2.3.12.1
Simplify each term.
Step 5.2.3.12.1.1
Multiply (x-6)13 by (x-6)13 by adding the exponents.
Step 5.2.3.12.1.1.1
Use the power rule aman=am+n to combine exponents.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)13+13+(x-6)13⋅5+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
Step 5.2.3.12.1.1.2
Combine the numerators over the common denominator.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)1+13+(x-6)13⋅5+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
Step 5.2.3.12.1.1.3
Add 1 and 1.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+(x-6)13⋅5+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+(x-6)13⋅5+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
Step 5.2.3.12.1.2
Move 5 to the left of (x-6)13.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+5⋅(x-6)13+5(x-6)13+5⋅5))+75(2(x-6)13+10)2-119
Step 5.2.3.12.1.3
Multiply 5 by 5.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+5(x-6)13+5(x-6)13+25))+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+5(x-6)13+5(x-6)13+25))+75(2(x-6)13+10)2-119
Step 5.2.3.12.2
Add 5(x-6)13 and 5(x-6)13.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+10(x-6)13+25))+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15((x-6)23+10(x-6)13+25))+75(2(x-6)13+10)2-119
Step 5.2.3.13
Apply the distributive property.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15(x-6)23+15(10(x-6)13)+15⋅25)+75(2(x-6)13+10)2-119
Step 5.2.3.14
Simplify.
Step 5.2.3.14.1
Multiply 10 by 15.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15(x-6)23+150(x-6)13+15⋅25)+75(2(x-6)13+10)2-119
Step 5.2.3.14.2
Multiply 15 by 25.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15(x-6)23+150(x-6)13+375)+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15(x-6)23+150(x-6)13+375)+75(2(x-6)13+10)2-119
Step 5.2.3.15
Apply the distributive property.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-(15(x-6)23)-(150(x-6)13)-1⋅375+75(2(x-6)13+10)2-119
Step 5.2.3.16
Simplify.
Step 5.2.3.16.1
Multiply 15 by -1.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-(150(x-6)13)-1⋅375+75(2(x-6)13+10)2-119
Step 5.2.3.16.2
Multiply 150 by -1.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-1⋅375+75(2(x-6)13+10)2-119
Step 5.2.3.16.3
Multiply -1 by 375.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75(2(x-6)13+10)2-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75(2(x-6)13+10)2-119
Step 5.2.3.17
Factor 2 out of 75(2(x-6)13+10).
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+2(75((x-6)13+5))2-119
Step 5.2.3.18
Cancel the common factors.
Step 5.2.3.18.1
Factor 2 out of 2.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+2(75((x-6)13+5))2(1)-119
Step 5.2.3.18.2
Cancel the common factor.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+2(75((x-6)13+5))2⋅1-119
Step 5.2.3.18.3
Rewrite the expression.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75((x-6)13+5)1-119
Step 5.2.3.18.4
Divide 75((x-6)13+5) by 1.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75((x-6)13+5)-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75((x-6)13+5)-119
Step 5.2.3.19
Apply the distributive property.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75(x-6)13+75⋅5-119
Step 5.2.3.20
Multiply 75 by 5.
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75(x-6)13+375-119
f-1(2(x-6)13+10)=x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75(x-6)13+375-119
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in x+15(x-6)23+75(x-6)13+119-15(x-6)23-150(x-6)13-375+75(x-6)13+375-119.
Step 5.2.4.1.1
Subtract 15(x-6)23 from 15(x-6)23.
f-1(2(x-6)13+10)=x+75(x-6)13+119+0-150(x-6)13-375+75(x-6)13+375-119
Step 5.2.4.1.2
Add x+75(x-6)13+119 and 0.
f-1(2(x-6)13+10)=x+75(x-6)13+119-150(x-6)13-375+75(x-6)13+375-119
Step 5.2.4.1.3
Add -375 and 375.
f-1(2(x-6)13+10)=x+75(x-6)13+119-150(x-6)13+75(x-6)13+0-119
Step 5.2.4.1.4
Add x+75(x-6)13+119-150(x-6)13+75(x-6)13 and 0.
f-1(2(x-6)13+10)=x+75(x-6)13+119-150(x-6)13+75(x-6)13-119
Step 5.2.4.1.5
Subtract 119 from 119.
f-1(2(x-6)13+10)=x+75(x-6)13+0-150(x-6)13+75(x-6)13
Step 5.2.4.1.6
Add x+75(x-6)13 and 0.
f-1(2(x-6)13+10)=x+75(x-6)13-150(x-6)13+75(x-6)13
f-1(2(x-6)13+10)=x+75(x-6)13-150(x-6)13+75(x-6)13
Step 5.2.4.2
Subtract 150(x-6)13 from 75(x-6)13.
f-1(2(x-6)13+10)=x-75(x-6)13+75(x-6)13
Step 5.2.4.3
Combine the opposite terms in x-75(x-6)13+75(x-6)13.
Step 5.2.4.3.1
Add -75(x-6)13 and 75(x-6)13.
f-1(2(x-6)13+10)=x+0
Step 5.2.4.3.2
Add x and 0.
f-1(2(x-6)13+10)=x
f-1(2(x-6)13+10)=x
f-1(2(x-6)13+10)=x
f-1(2(x-6)13+10)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(x38-15x24+75x2-119) by substituting in the value of f-1 into f.
f(x38-15x24+75x2-119)=2((x38-15x24+75x2-119)-6)13+10
Step 5.3.3
Subtract 6 from -119.
f(x38-15x24+75x2-119)=2(x38-15x24+75x2-125)13+10
f(x38-15x24+75x2-119)=2(x38-15x24+75x2-125)13+10
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=x38-15x24+75x2-119 is the inverse of f(x)=2(x-6)13+10.
f-1(x)=x38-15x24+75x2-119
f-1(x)=x38-15x24+75x2-119