Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.4
Simplify the exponent.
Step 3.4.1
Simplify the left side.
Step 3.4.1.1
Simplify .
Step 3.4.1.1.1
Apply the product rule to .
Step 3.4.1.1.2
Raise to the power of .
Step 3.4.1.1.3
Multiply the exponents in .
Step 3.4.1.1.3.1
Apply the power rule and multiply exponents, .
Step 3.4.1.1.3.2
Cancel the common factor of .
Step 3.4.1.1.3.2.1
Cancel the common factor.
Step 3.4.1.1.3.2.2
Rewrite the expression.
Step 3.4.1.1.4
Simplify.
Step 3.4.1.1.5
Apply the distributive property.
Step 3.4.1.1.6
Multiply by .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Use the Binomial Theorem.
Step 3.4.2.1.2
Simplify each term.
Step 3.4.2.1.2.1
Multiply by .
Step 3.4.2.1.2.2
Raise to the power of .
Step 3.4.2.1.2.3
Multiply by .
Step 3.4.2.1.2.4
Raise to the power of .
Step 3.5
Solve for .
Step 3.5.1
Move all terms not containing to the right side of the equation.
Step 3.5.1.1
Add to both sides of the equation.
Step 3.5.1.2
Add and .
Step 3.5.2
Divide each term in by and simplify.
Step 3.5.2.1
Divide each term in by .
Step 3.5.2.2
Simplify the left side.
Step 3.5.2.2.1
Cancel the common factor of .
Step 3.5.2.2.1.1
Cancel the common factor.
Step 3.5.2.2.1.2
Divide by .
Step 3.5.2.3
Simplify the right side.
Step 3.5.2.3.1
Simplify each term.
Step 3.5.2.3.1.1
Cancel the common factor of and .
Step 3.5.2.3.1.1.1
Factor out of .
Step 3.5.2.3.1.1.2
Cancel the common factors.
Step 3.5.2.3.1.1.2.1
Factor out of .
Step 3.5.2.3.1.1.2.2
Cancel the common factor.
Step 3.5.2.3.1.1.2.3
Rewrite the expression.
Step 3.5.2.3.1.2
Move the negative in front of the fraction.
Step 3.5.2.3.1.3
Cancel the common factor of and .
Step 3.5.2.3.1.3.1
Factor out of .
Step 3.5.2.3.1.3.2
Cancel the common factors.
Step 3.5.2.3.1.3.2.1
Factor out of .
Step 3.5.2.3.1.3.2.2
Cancel the common factor.
Step 3.5.2.3.1.3.2.3
Rewrite the expression.
Step 3.5.2.3.1.4
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify each term.
Step 5.2.3.1
Simplify the numerator.
Step 5.2.3.1.1
Factor out of .
Step 5.2.3.1.1.1
Factor out of .
Step 5.2.3.1.1.2
Factor out of .
Step 5.2.3.1.1.3
Factor out of .
Step 5.2.3.1.2
Apply the product rule to .
Step 5.2.3.1.3
Raise to the power of .
Step 5.2.3.2
Cancel the common factor.
Step 5.2.3.3
Divide by .
Step 5.2.3.4
Use the Binomial Theorem.
Step 5.2.3.5
Simplify each term.
Step 5.2.3.5.1
Multiply the exponents in .
Step 5.2.3.5.1.1
Apply the power rule and multiply exponents, .
Step 5.2.3.5.1.2
Cancel the common factor of .
Step 5.2.3.5.1.2.1
Cancel the common factor.
Step 5.2.3.5.1.2.2
Rewrite the expression.
Step 5.2.3.5.2
Simplify.
Step 5.2.3.5.3
Multiply the exponents in .
Step 5.2.3.5.3.1
Apply the power rule and multiply exponents, .
Step 5.2.3.5.3.2
Combine and .
Step 5.2.3.5.4
Multiply by .
Step 5.2.3.5.5
Raise to the power of .
Step 5.2.3.5.6
Multiply by .
Step 5.2.3.5.7
Raise to the power of .
Step 5.2.3.6
Add and .
Step 5.2.3.7
Simplify the numerator.
Step 5.2.3.7.1
Factor out of .
Step 5.2.3.7.1.1
Factor out of .
Step 5.2.3.7.1.2
Factor out of .
Step 5.2.3.7.1.3
Factor out of .
Step 5.2.3.7.2
Apply the product rule to .
Step 5.2.3.7.3
Raise to the power of .
Step 5.2.3.7.4
Multiply by .
Step 5.2.3.8
Factor out of .
Step 5.2.3.9
Cancel the common factors.
Step 5.2.3.9.1
Factor out of .
Step 5.2.3.9.2
Cancel the common factor.
Step 5.2.3.9.3
Rewrite the expression.
Step 5.2.3.9.4
Divide by .
Step 5.2.3.10
Rewrite as .
Step 5.2.3.11
Expand using the FOIL Method.
Step 5.2.3.11.1
Apply the distributive property.
Step 5.2.3.11.2
Apply the distributive property.
Step 5.2.3.11.3
Apply the distributive property.
Step 5.2.3.12
Simplify and combine like terms.
Step 5.2.3.12.1
Simplify each term.
Step 5.2.3.12.1.1
Multiply by by adding the exponents.
Step 5.2.3.12.1.1.1
Use the power rule to combine exponents.
Step 5.2.3.12.1.1.2
Combine the numerators over the common denominator.
Step 5.2.3.12.1.1.3
Add and .
Step 5.2.3.12.1.2
Move to the left of .
Step 5.2.3.12.1.3
Multiply by .
Step 5.2.3.12.2
Add and .
Step 5.2.3.13
Apply the distributive property.
Step 5.2.3.14
Simplify.
Step 5.2.3.14.1
Multiply by .
Step 5.2.3.14.2
Multiply by .
Step 5.2.3.15
Apply the distributive property.
Step 5.2.3.16
Simplify.
Step 5.2.3.16.1
Multiply by .
Step 5.2.3.16.2
Multiply by .
Step 5.2.3.16.3
Multiply by .
Step 5.2.3.17
Factor out of .
Step 5.2.3.18
Cancel the common factors.
Step 5.2.3.18.1
Factor out of .
Step 5.2.3.18.2
Cancel the common factor.
Step 5.2.3.18.3
Rewrite the expression.
Step 5.2.3.18.4
Divide by .
Step 5.2.3.19
Apply the distributive property.
Step 5.2.3.20
Multiply by .
Step 5.2.4
Simplify by adding terms.
Step 5.2.4.1
Combine the opposite terms in .
Step 5.2.4.1.1
Subtract from .
Step 5.2.4.1.2
Add and .
Step 5.2.4.1.3
Add and .
Step 5.2.4.1.4
Add and .
Step 5.2.4.1.5
Subtract from .
Step 5.2.4.1.6
Add and .
Step 5.2.4.2
Subtract from .
Step 5.2.4.3
Combine the opposite terms in .
Step 5.2.4.3.1
Add and .
Step 5.2.4.3.2
Add and .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Subtract from .
Step 5.4
Since and , then is the inverse of .