Enter a problem...
Algebra Examples
-12<2x-1312≤23−12<2x−1312≤23
Step 1
Multiply each term in the inequality by 1212.
-12⋅12<2x-1312⋅12≤23⋅12−12⋅12<2x−1312⋅12≤23⋅12
Step 2
Step 2.1
Move the leading negative in -12−12 into the numerator.
-12⋅12<2x-1312⋅12≤23⋅12−12⋅12<2x−1312⋅12≤23⋅12
Step 2.2
Factor 22 out of 1212.
-12⋅(2(6))<2x-1312⋅12≤23⋅12−12⋅(2(6))<2x−1312⋅12≤23⋅12
Step 2.3
Cancel the common factor.
-12⋅(2⋅6)<2x-1312⋅12≤23⋅12−12⋅(2⋅6)<2x−1312⋅12≤23⋅12
Step 2.4
Rewrite the expression.
-1⋅6<2x-1312⋅12≤23⋅12−1⋅6<2x−1312⋅12≤23⋅12
-1⋅6<2x-1312⋅12≤23⋅12−1⋅6<2x−1312⋅12≤23⋅12
Step 3
Multiply -1−1 by 66.
-6<2x-1312⋅12≤23⋅12−6<2x−1312⋅12≤23⋅12
Step 4
Step 4.1
Cancel the common factor.
-6<2x-1312⋅12≤23⋅12−6<2x−1312⋅12≤23⋅12
Step 4.2
Rewrite the expression.
-6<2x-13≤23⋅12−6<2x−13≤23⋅12
-6<2x-13≤23⋅12−6<2x−13≤23⋅12
Step 5
Step 5.1
Factor 33 out of 1212.
-6<2x-13≤23⋅(3(4))−6<2x−13≤23⋅(3(4))
Step 5.2
Cancel the common factor.
-6<2x-13≤23⋅(3⋅4)−6<2x−13≤23⋅(3⋅4)
Step 5.3
Rewrite the expression.
-6<2x-13≤2⋅4−6<2x−13≤2⋅4
-6<2x-13≤2⋅4−6<2x−13≤2⋅4
Step 6
Multiply 22 by 44.
-6<2x-13≤8−6<2x−13≤8
Step 7
Step 7.1
Add 1313 to each section of the inequality because it does not contain the variable we are trying to solve for.
-6+13<2x≤8+13−6+13<2x≤8+13
Step 7.2
Add -6−6 and 1313.
7<2x≤8+137<2x≤8+13
Step 7.3
Add 88 and 1313.
7<2x≤217<2x≤21
7<2x≤217<2x≤21
Step 8
Divide each term in the inequality by 22.
72<2x2≤21272<2x2≤212
Step 9
Step 9.1
Cancel the common factor.
72<2x2≤21272<2x2≤212
Step 9.2
Divide xx by 11.
72<x≤21272<x≤212
72<x≤21272<x≤212
Step 10
The result can be shown in multiple forms.
Inequality Form:
72<x≤21272<x≤212
Interval Notation:
(72,212](72,212]
Step 11