Enter a problem...
Algebra Examples
f(x)=(x7-23)15f(x)=(x7−23)15
Step 1
Write f(x)=(x7-23)15 as an equation.
y=(x7-23)15
Step 2
Interchange the variables.
x=(y7-23)15
Step 3
Step 3.1
Rewrite the equation as (y7-23)15=x.
(y7-23)15=x
Step 3.2
Raise each side of the equation to the power of 5 to eliminate the fractional exponent on the left side.
((y7-23)15)5=x5
Step 3.3
Simplify the left side.
Step 3.3.1
Simplify ((y7-23)15)5.
Step 3.3.1.1
Multiply the exponents in ((y7-23)15)5.
Step 3.3.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(y7-23)15⋅5=x5
Step 3.3.1.1.2
Cancel the common factor of 5.
Step 3.3.1.1.2.1
Cancel the common factor.
(y7-23)15⋅5=x5
Step 3.3.1.1.2.2
Rewrite the expression.
(y7-23)1=x5
(y7-23)1=x5
(y7-23)1=x5
Step 3.3.1.2
Split the fraction y7-23 into two fractions.
(y73+-23)1=x5
Step 3.3.1.3
Move the negative in front of the fraction.
(y73-23)1=x5
Step 3.3.1.4
Simplify.
y73-23=x5
y73-23=x5
y73-23=x5
Step 3.4
Solve for y.
Step 3.4.1
Add 23 to both sides of the equation.
y73=x5+23
Step 3.4.2
Multiply both sides of the equation by 3.
3y73=3(x5+23)
Step 3.4.3
Simplify both sides of the equation.
Step 3.4.3.1
Simplify the left side.
Step 3.4.3.1.1
Cancel the common factor of 3.
Step 3.4.3.1.1.1
Cancel the common factor.
3y73=3(x5+23)
Step 3.4.3.1.1.2
Rewrite the expression.
y7=3(x5+23)
y7=3(x5+23)
y7=3(x5+23)
Step 3.4.3.2
Simplify the right side.
Step 3.4.3.2.1
Simplify 3(x5+23).
Step 3.4.3.2.1.1
Apply the distributive property.
y7=3x5+3(23)
Step 3.4.3.2.1.2
Cancel the common factor of 3.
Step 3.4.3.2.1.2.1
Cancel the common factor.
y7=3x5+3(23)
Step 3.4.3.2.1.2.2
Rewrite the expression.
y7=3x5+2
y7=3x5+2
y7=3x5+2
y7=3x5+2
y7=3x5+2
Step 3.4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=7√3x5+2
y=7√3x5+2
y=7√3x5+2
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=7√3x5+2
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1((x7-23)15) by substituting in the value of f into f-1.
f-1((x7-23)15)=7√3((x7-23)15)5+2
Step 5.2.3
Multiply the exponents in ((x7-23)15)5.
Step 5.2.3.1
Apply the power rule and multiply exponents, (am)n=amn.
f-1((x7-23)15)=7√3(x7-23)15⋅5+2
Step 5.2.3.2
Cancel the common factor of 5.
Step 5.2.3.2.1
Cancel the common factor.
f-1((x7-23)15)=7√3(x7-23)15⋅5+2
Step 5.2.3.2.2
Rewrite the expression.
f-1((x7-23)15)=7√3(x7-23)+2
f-1((x7-23)15)=7√3(x7-23)+2
f-1((x7-23)15)=7√3(x7-23)+2
Step 5.2.4
Cancel the common factor of 3.
Step 5.2.4.1
Cancel the common factor.
f-1((x7-23)15)=7√3(x7-23)+2
Step 5.2.4.2
Rewrite the expression.
f-1((x7-23)15)=7√x7-2+2
f-1((x7-23)15)=7√x7-2+2
Step 5.2.5
Simplify by adding numbers.
Step 5.2.5.1
Add -2 and 2.
f-1((x7-23)15)=7√x7+0
Step 5.2.5.2
Add x7 and 0.
f-1((x7-23)15)=7√x7
f-1((x7-23)15)=7√x7
Step 5.2.6
Pull terms out from under the radical, assuming real numbers.
f-1((x7-23)15)=x
f-1((x7-23)15)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(7√3x5+2) by substituting in the value of f-1 into f.
f(7√3x5+2)=((7√3x5+2)7-23)15
Step 5.3.3
Simplify the numerator.
Step 5.3.3.1
Use n√ax=axn to rewrite 7√3x5+2 as (3x5+2)17.
f(7√3x5+2)=(((3x5+2)17)7-23)15
Step 5.3.3.2
Multiply the exponents in ((3x5+2)17)7.
Step 5.3.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
f(7√3x5+2)=((3x5+2)17⋅7-23)15
Step 5.3.3.2.2
Cancel the common factor of 7.
Step 5.3.3.2.2.1
Cancel the common factor.
f(7√3x5+2)=((3x5+2)17⋅7-23)15
Step 5.3.3.2.2.2
Rewrite the expression.
f(7√3x5+2)=((3x5+2)-23)15
f(7√3x5+2)=((3x5+2)-23)15
f(7√3x5+2)=((3x5+2)-23)15
Step 5.3.3.3
Simplify.
f(7√3x5+2)=(3x5+2-23)15
Step 5.3.3.4
Subtract 2 from 2.
f(7√3x5+2)=(3x5+03)15
Step 5.3.3.5
Add 3x5 and 0.
f(7√3x5+2)=(3x53)15
f(7√3x5+2)=(3x53)15
Step 5.3.4
Reduce the expression by cancelling the common factors.
Step 5.3.4.1
Cancel the common factor of 3.
Step 5.3.4.1.1
Cancel the common factor.
f(7√3x5+2)=(3x53)15
Step 5.3.4.1.2
Divide x5 by 1.
f(7√3x5+2)=(x5)15
f(7√3x5+2)=(x5)15
Step 5.3.4.2
Multiply the exponents in (x5)15.
Step 5.3.4.2.1
Apply the power rule and multiply exponents, (am)n=amn.
f(7√3x5+2)=x5(15)
Step 5.3.4.2.2
Cancel the common factor of 5.
Step 5.3.4.2.2.1
Cancel the common factor.
f(7√3x5+2)=x5(15)
Step 5.3.4.2.2.2
Rewrite the expression.
f(7√3x5+2)=x
f(7√3x5+2)=x
f(7√3x5+2)=x
f(7√3x5+2)=x
f(7√3x5+2)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=7√3x5+2 is the inverse of f(x)=(x7-23)15.
f-1(x)=7√3x5+2
f-1(x)=7√3x5+2