Enter a problem...
Algebra Examples
y=x2-|6x+5|y=x2−|6x+5|
Step 1
Step 1.1
To find the xx coordinate of the vertex, set the inside of the absolute value 6x+56x+5 equal to 00. In this case, 6x+5=06x+5=0.
6x+5=06x+5=0
Step 1.2
Solve the equation 6x+5=06x+5=0 to find the xx coordinate for the absolute value vertex.
Step 1.2.1
Subtract 55 from both sides of the equation.
6x=-56x=−5
Step 1.2.2
Divide each term in 6x=-56x=−5 by 66 and simplify.
Step 1.2.2.1
Divide each term in 6x=-56x=−5 by 66.
6x6=-566x6=−56
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of 66.
Step 1.2.2.2.1.1
Cancel the common factor.
6x6=-56
Step 1.2.2.2.1.2
Divide x by 1.
x=-56
x=-56
x=-56
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Move the negative in front of the fraction.
x=-56
x=-56
x=-56
x=-56
Step 1.3
Replace the variable x with -56 in the expression.
y=(-56)2-|6(-56)+5|
Step 1.4
Simplify (-56)2-|6(-56)+5|.
Step 1.4.1
Simplify each term.
Step 1.4.1.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 1.4.1.1.1
Apply the product rule to -56.
y=(-1)2(56)2-|6(-56)+5|
Step 1.4.1.1.2
Apply the product rule to 56.
y=(-1)2(5262)-|6(-56)+5|
y=(-1)2(5262)-|6(-56)+5|
Step 1.4.1.2
Raise -1 to the power of 2.
y=1(5262)-|6(-56)+5|
Step 1.4.1.3
Multiply 5262 by 1.
y=5262-|6(-56)+5|
Step 1.4.1.4
Raise 5 to the power of 2.
y=2562-|6(-56)+5|
Step 1.4.1.5
Raise 6 to the power of 2.
y=2536-|6(-56)+5|
Step 1.4.1.6
Cancel the common factor of 6.
Step 1.4.1.6.1
Move the leading negative in -56 into the numerator.
y=2536-|6(-56)+5|
Step 1.4.1.6.2
Cancel the common factor.
y=2536-|6(-56)+5|
Step 1.4.1.6.3
Rewrite the expression.
y=2536-|-5+5|
y=2536-|-5+5|
Step 1.4.1.7
Add -5 and 5.
y=2536-|0|
Step 1.4.1.8
The absolute value is the distance between a number and zero. The distance between 0 and 0 is 0.
y=2536-0
Step 1.4.1.9
Multiply -1 by 0.
y=2536+0
y=2536+0
Step 1.4.2
Add 2536 and 0.
y=2536
y=2536
Step 1.5
The absolute value vertex is (-56,2536).
(-56,2536)
(-56,2536)
Step 2
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{x|x∈ℝ}
Step 3
Step 3.1
Substitute the x value -3 into f(x)=x2-|6x+5|. In this case, the point is (-3,-4).
Step 3.1.1
Replace the variable x with -3 in the expression.
f(-3)=(-3)2-|6(-3)+5|
Step 3.1.2
Simplify the result.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Raise -3 to the power of 2.
f(-3)=9-|6(-3)+5|
Step 3.1.2.1.2
Multiply 6 by -3.
f(-3)=9-|-18+5|
Step 3.1.2.1.3
Add -18 and 5.
f(-3)=9-|-13|
Step 3.1.2.1.4
The absolute value is the distance between a number and zero. The distance between -13 and 0 is 13.
f(-3)=9-1⋅13
Step 3.1.2.1.5
Multiply -1 by 13.
f(-3)=9-13
f(-3)=9-13
Step 3.1.2.2
Subtract 13 from 9.
f(-3)=-4
Step 3.1.2.3
The final answer is -4.
y=-4
y=-4
y=-4
Step 3.2
Substitute the x value -2 into f(x)=x2-|6x+5|. In this case, the point is (-2,-3).
Step 3.2.1
Replace the variable x with -2 in the expression.
f(-2)=(-2)2-|6(-2)+5|
Step 3.2.2
Simplify the result.
Step 3.2.2.1
Simplify each term.
Step 3.2.2.1.1
Raise -2 to the power of 2.
f(-2)=4-|6(-2)+5|
Step 3.2.2.1.2
Multiply 6 by -2.
f(-2)=4-|-12+5|
Step 3.2.2.1.3
Add -12 and 5.
f(-2)=4-|-7|
Step 3.2.2.1.4
The absolute value is the distance between a number and zero. The distance between -7 and 0 is 7.
f(-2)=4-1⋅7
Step 3.2.2.1.5
Multiply -1 by 7.
f(-2)=4-7
f(-2)=4-7
Step 3.2.2.2
Subtract 7 from 4.
f(-2)=-3
Step 3.2.2.3
The final answer is -3.
y=-3
y=-3
y=-3
Step 3.3
Substitute the x value -1 into f(x)=x2-|6x+5|. In this case, the point is (-1,0).
Step 3.3.1
Replace the variable x with -1 in the expression.
f(-1)=(-1)2-|6(-1)+5|
Step 3.3.2
Simplify the result.
Step 3.3.2.1
Simplify each term.
Step 3.3.2.1.1
Raise -1 to the power of 2.
f(-1)=1-|6(-1)+5|
Step 3.3.2.1.2
Multiply 6 by -1.
f(-1)=1-|-6+5|
Step 3.3.2.1.3
Add -6 and 5.
f(-1)=1-|-1|
Step 3.3.2.1.4
The absolute value is the distance between a number and zero. The distance between -1 and 0 is 1.
f(-1)=1-1⋅1
Step 3.3.2.1.5
Multiply -1 by 1.
f(-1)=1-1
f(-1)=1-1
Step 3.3.2.2
Subtract 1 from 1.
f(-1)=0
Step 3.3.2.3
The final answer is 0.
y=0
y=0
y=0
Step 3.4
Substitute the x value 0 into f(x)=x2-|6x+5|. In this case, the point is (0,-5).
Step 3.4.1
Replace the variable x with 0 in the expression.
f(0)=(0)2-|6(0)+5|
Step 3.4.2
Simplify the result.
Step 3.4.2.1
Simplify each term.
Step 3.4.2.1.1
Raising 0 to any positive power yields 0.
f(0)=0-|6(0)+5|
Step 3.4.2.1.2
Multiply 6 by 0.
f(0)=0-|0+5|
Step 3.4.2.1.3
Add 0 and 5.
f(0)=0-|5|
Step 3.4.2.1.4
The absolute value is the distance between a number and zero. The distance between 0 and 5 is 5.
f(0)=0-1⋅5
Step 3.4.2.1.5
Multiply -1 by 5.
f(0)=0-5
f(0)=0-5
Step 3.4.2.2
Subtract 5 from 0.
f(0)=-5
Step 3.4.2.3
The final answer is -5.
y=-5
y=-5
y=-5
Step 3.5
The absolute value can be graphed using the points around the vertex (-56,2536),(-3,-4),(-2,-3),(-1,0),(0,-5)
xy-3-4-2-3-10-5625360-5
xy-3-4-2-3-10-5625360-5
Step 4