Enter a problem...
Algebra Examples
Step 1
Step 1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 1.2
The LCM is the smallest positive number that all of the numbers divide into evenly.
1. List the prime factors of each number.
2. Multiply each factor the greatest number of times it occurs in either number.
Step 1.3
The number is not a prime number because it only has one positive factor, which is itself.
Not prime
Step 1.4
The LCM of is the result of multiplying all prime factors the greatest number of times they occur in either number.
Step 1.5
The factor for is itself.
occurs time.
Step 1.6
The factor for is itself.
occurs time.
Step 1.7
The LCM of is the result of multiplying all factors the greatest number of times they occur in either term.
Step 2
Step 2.1
Multiply each term in by .
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of .
Step 2.2.1.1
Cancel the common factor.
Step 2.2.1.2
Rewrite the expression.
Step 2.2.2
Expand using the FOIL Method.
Step 2.2.2.1
Apply the distributive property.
Step 2.2.2.2
Apply the distributive property.
Step 2.2.2.3
Apply the distributive property.
Step 2.2.3
Simplify terms.
Step 2.2.3.1
Combine the opposite terms in .
Step 2.2.3.1.1
Reorder the factors in the terms and .
Step 2.2.3.1.2
Subtract from .
Step 2.2.3.1.3
Add and .
Step 2.2.3.2
Simplify each term.
Step 2.2.3.2.1
Rewrite using the commutative property of multiplication.
Step 2.2.3.2.2
Multiply by by adding the exponents.
Step 2.2.3.2.2.1
Move .
Step 2.2.3.2.2.2
Multiply by .
Step 2.2.3.2.3
Multiply by .
Step 2.2.3.2.4
Multiply by .
Step 2.3
Simplify the right side.
Step 2.3.1
Cancel the common factor of .
Step 2.3.1.1
Factor out of .
Step 2.3.1.2
Cancel the common factor.
Step 2.3.1.3
Rewrite the expression.
Step 2.3.2
Expand using the FOIL Method.
Step 2.3.2.1
Apply the distributive property.
Step 2.3.2.2
Apply the distributive property.
Step 2.3.2.3
Apply the distributive property.
Step 2.3.3
Simplify and combine like terms.
Step 2.3.3.1
Simplify each term.
Step 2.3.3.1.1
Rewrite using the commutative property of multiplication.
Step 2.3.3.1.2
Multiply by by adding the exponents.
Step 2.3.3.1.2.1
Move .
Step 2.3.3.1.2.2
Multiply by .
Step 2.3.3.1.3
Move to the left of .
Step 2.3.3.1.4
Multiply by .
Step 2.3.3.1.5
Multiply by .
Step 2.3.3.2
Add and .
Step 3
Step 3.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.2
Move all terms containing to the left side of the equation.
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Combine the opposite terms in .
Step 3.2.2.1
Subtract from .
Step 3.2.2.2
Add and .
Step 3.3
Move all terms not containing to the right side of the equation.
Step 3.3.1
Add to both sides of the equation.
Step 3.3.2
Add and .
Step 3.4
Divide each term in by and simplify.
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Cancel the common factor of .
Step 3.4.2.1.1
Cancel the common factor.
Step 3.4.2.1.2
Divide by .
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Divide by .