Enter a problem...
Algebra Examples
Step 1
Step 1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2
Write the factored form using these integers.
Step 2
Step 2.1
Rewrite as .
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 3
Step 3.1
Factor out of .
Step 3.1.1
Factor out of .
Step 3.1.2
Factor out of .
Step 3.1.3
Factor out of .
Step 3.2
Factor out of .
Step 3.2.1
Factor out of .
Step 3.2.2
Factor out of .
Step 3.2.3
Factor out of .
Step 3.3
Cancel the common factor of .
Step 3.3.1
Factor out of .
Step 3.3.2
Cancel the common factor.
Step 3.3.3
Rewrite the expression.
Step 3.4
Multiply by .
Step 4
Raise to the power of .
Step 5
Raise to the power of .
Step 6
Use the power rule to combine exponents.
Step 7
Add and .
Step 8
Combine.
Step 9
Step 9.1
Factor out of .
Step 9.2
Cancel the common factors.
Step 9.2.1
Factor out of .
Step 9.2.2
Cancel the common factor.
Step 9.2.3
Rewrite the expression.
Step 10
Step 10.1
Factor out of .
Step 10.2
Cancel the common factors.
Step 10.2.1
Factor out of .
Step 10.2.2
Cancel the common factor.
Step 10.2.3
Rewrite the expression.
Step 11
Step 11.1
Cancel the common factor.
Step 11.2
Rewrite the expression.
Step 12
Step 12.1
Move to the left of .
Step 12.2
Reorder factors in .