Algebra Examples

Find the Area of the Triangle (-4,-5) , (-3,2) and (9,0)
(-4,-5) , (-3,2) and (9,0)
Step 1
Use the formula to find the area of the triangle with 3 points (Ax,Ay), (Bx,By), (Cx,Cy).
Area=|Ax(By-Cy)+Bx(Cy-Ay)+Cx(Ay-By)|2
Step 2
Substitute the points into the formula.
Tap for more steps...
Step 2.1
Substitute the values of the first point into the formula.
|-4(By-Cy)+Bx(Cy+5)+Cx(-5-By)|2
Step 2.2
Substitute the values of the second point into the formula.
|-4(2-Cy)-3(Cy+5)+Cx(-5-12)|2
Step 2.3
Substitute the values of the final point into the formula.
|-4(2+0)-3(0+5)+9(-5-12)|2
|-4(2+0)-3(0+5)+9(-5-12)|2
Step 3
Simplify to find the area of the triangle.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Add 2 and 0.
|-42-3(0+5)+9(-5-12)|2
Step 3.1.2
Multiply -4 by 2.
|-8-3(0+5)+9(-5-12)|2
Step 3.1.3
Add 0 and 5.
|-8-35+9(-5-12)|2
Step 3.1.4
Multiply -3 by 5.
|-8-15+9(-5-12)|2
Step 3.1.5
Multiply -1 by 2.
|-8-15+9(-5-2)|2
Step 3.1.6
Subtract 2 from -5.
|-8-15+9-7|2
Step 3.1.7
Multiply 9 by -7.
|-8-15-63|2
Step 3.1.8
Subtract 15 from -8.
|-23-63|2
Step 3.1.9
Subtract 63 from -23.
|-86|2
Step 3.1.10
The absolute value is the distance between a number and zero. The distance between -86 and 0 is 86.
862
862
Step 3.2
Divide 86 by 2.
43
43
 [x2  12  π  xdx ]