Enter a problem...
Algebra Examples
Step 1
Step 1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.2
Write the factored form using these integers.
Step 2
Step 2.1
Rewrite as .
Step 2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.3
Factor using the AC method.
Step 2.3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 2.3.2
Write the factored form using these integers.
Step 3
Step 3.1
Cancel the common factor of .
Step 3.1.1
Cancel the common factor.
Step 3.1.2
Rewrite the expression.
Step 3.2
Cancel the common factor of .
Step 3.2.1
Cancel the common factor.
Step 3.2.2
Rewrite the expression.
Step 3.3
Cancel the common factor of and .
Step 3.3.1
Factor out of .
Step 3.3.2
Rewrite as .
Step 3.3.3
Factor out of .
Step 3.3.4
Reorder terms.
Step 3.3.5
Cancel the common factor.
Step 3.3.6
Rewrite the expression.
Step 3.4
Move the negative in front of the fraction.