Algebra Examples

Solve for x fourth root of 83x-18=3 fourth root of x
Step 1
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 2
Simplify each side of the equation.
Tap for more steps...
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1.2.1
Cancel the common factor.
Step 2.2.1.1.2.2
Rewrite the expression.
Step 2.2.1.2
Simplify.
Step 2.3
Simplify the right side.
Tap for more steps...
Step 2.3.1
Simplify .
Tap for more steps...
Step 2.3.1.1
Simplify the expression.
Tap for more steps...
Step 2.3.1.1.1
Apply the product rule to .
Step 2.3.1.1.2
Raise to the power of .
Step 2.3.1.2
Rewrite as .
Tap for more steps...
Step 2.3.1.2.1
Use to rewrite as .
Step 2.3.1.2.2
Apply the power rule and multiply exponents, .
Step 2.3.1.2.3
Combine and .
Step 2.3.1.2.4
Cancel the common factor of .
Tap for more steps...
Step 2.3.1.2.4.1
Cancel the common factor.
Step 2.3.1.2.4.2
Rewrite the expression.
Step 2.3.1.2.5
Simplify.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Add to both sides of the equation.
Step 3.3
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in by .
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
Step 3.3.2.1.2
Divide by .
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Divide by .