Algebra Examples

Solve for θ tan(2theta)+tan(theta)=0
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Apply the tangent double-angle identity.
Step 1.2
Simplify the denominator.
Tap for more steps...
Step 1.2.1
Rewrite as .
Step 1.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2
Factor out of .
Tap for more steps...
Step 2.1
Factor out of .
Step 2.2
Raise to the power of .
Step 2.3
Factor out of .
Step 2.4
Factor out of .
Step 3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4
Set equal to and solve for .
Tap for more steps...
Step 4.1
Set equal to .
Step 4.2
Solve for .
Tap for more steps...
Step 4.2.1
Take the inverse tangent of both sides of the equation to extract from inside the tangent.
Step 4.2.2
Simplify the right side.
Tap for more steps...
Step 4.2.2.1
The exact value of is .
Step 4.2.3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from to find the solution in the fourth quadrant.
Step 4.2.4
Add and .
Step 4.2.5
Find the period of .
Tap for more steps...
Step 4.2.5.1
The period of the function can be calculated using .
Step 4.2.5.2
Replace with in the formula for period.
Step 4.2.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 4.2.5.4
Divide by .
Step 4.2.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
, for any integer
Step 5
Set equal to and solve for .
Tap for more steps...
Step 5.1
Set equal to .
Step 5.2
Solve for .
Tap for more steps...
Step 5.2.1
Find the LCD of the terms in the equation.
Tap for more steps...
Step 5.2.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 5.2.1.2
The LCM of one and any expression is the expression.
Step 5.2.2
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 5.2.2.1
Multiply each term in by .
Step 5.2.2.2
Simplify the left side.
Tap for more steps...
Step 5.2.2.2.1
Simplify each term.
Tap for more steps...
Step 5.2.2.2.1.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.2.1.1.1
Cancel the common factor.
Step 5.2.2.2.1.1.2
Rewrite the expression.
Step 5.2.2.2.1.2
Multiply by .
Step 5.2.2.2.1.3
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.2.2.1.3.1
Apply the distributive property.
Step 5.2.2.2.1.3.2
Apply the distributive property.
Step 5.2.2.2.1.3.3
Apply the distributive property.
Step 5.2.2.2.1.4
Simplify and combine like terms.
Tap for more steps...
Step 5.2.2.2.1.4.1
Simplify each term.
Tap for more steps...
Step 5.2.2.2.1.4.1.1
Multiply by .
Step 5.2.2.2.1.4.1.2
Multiply by .
Step 5.2.2.2.1.4.1.3
Multiply by .
Step 5.2.2.2.1.4.1.4
Rewrite using the commutative property of multiplication.
Step 5.2.2.2.1.4.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.2.2.1.4.1.5.1
Move .
Step 5.2.2.2.1.4.1.5.2
Multiply by .
Step 5.2.2.2.1.4.2
Add and .
Step 5.2.2.2.1.4.3
Add and .
Step 5.2.2.2.2
Add and .
Step 5.2.2.3
Simplify the right side.
Tap for more steps...
Step 5.2.2.3.1
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.2.3.1.1
Apply the distributive property.
Step 5.2.2.3.1.2
Apply the distributive property.
Step 5.2.2.3.1.3
Apply the distributive property.
Step 5.2.2.3.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.2.3.2.1
Simplify each term.
Tap for more steps...
Step 5.2.2.3.2.1.1
Multiply by .
Step 5.2.2.3.2.1.2
Multiply by .
Step 5.2.2.3.2.1.3
Multiply by .
Step 5.2.2.3.2.1.4
Rewrite using the commutative property of multiplication.
Step 5.2.2.3.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.2.3.2.1.5.1
Move .
Step 5.2.2.3.2.1.5.2
Multiply by .
Step 5.2.2.3.2.2
Add and .
Step 5.2.2.3.2.3
Add and .
Step 5.2.2.3.3
Multiply by .
Step 5.2.3
Solve the equation.
Tap for more steps...
Step 5.2.3.1
Subtract from both sides of the equation.
Step 5.2.3.2
Divide each term in by and simplify.
Tap for more steps...
Step 5.2.3.2.1
Divide each term in by .
Step 5.2.3.2.2
Simplify the left side.
Tap for more steps...
Step 5.2.3.2.2.1
Dividing two negative values results in a positive value.
Step 5.2.3.2.2.2
Divide by .
Step 5.2.3.2.3
Simplify the right side.
Tap for more steps...
Step 5.2.3.2.3.1
Divide by .
Step 5.2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.2.3.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.2.3.4.1
First, use the positive value of the to find the first solution.
Step 5.2.3.4.2
Next, use the negative value of the to find the second solution.
Step 5.2.3.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.2.4
Set up each of the solutions to solve for .
Step 5.2.5
Solve for in .
Tap for more steps...
Step 5.2.5.1
Take the inverse tangent of both sides of the equation to extract from inside the tangent.
Step 5.2.5.2
Simplify the right side.
Tap for more steps...
Step 5.2.5.2.1
The exact value of is .
Step 5.2.5.3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from to find the solution in the fourth quadrant.
Step 5.2.5.4
Simplify .
Tap for more steps...
Step 5.2.5.4.1
To write as a fraction with a common denominator, multiply by .
Step 5.2.5.4.2
Combine fractions.
Tap for more steps...
Step 5.2.5.4.2.1
Combine and .
Step 5.2.5.4.2.2
Combine the numerators over the common denominator.
Step 5.2.5.4.3
Simplify the numerator.
Tap for more steps...
Step 5.2.5.4.3.1
Move to the left of .
Step 5.2.5.4.3.2
Add and .
Step 5.2.5.5
Find the period of .
Tap for more steps...
Step 5.2.5.5.1
The period of the function can be calculated using .
Step 5.2.5.5.2
Replace with in the formula for period.
Step 5.2.5.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 5.2.5.5.4
Divide by .
Step 5.2.5.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 5.2.6
Solve for in .
Tap for more steps...
Step 5.2.6.1
Take the inverse tangent of both sides of the equation to extract from inside the tangent.
Step 5.2.6.2
Simplify the right side.
Tap for more steps...
Step 5.2.6.2.1
The exact value of is .
Step 5.2.6.3
The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Step 5.2.6.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 5.2.6.4.1
Add to .
Step 5.2.6.4.2
The resulting angle of is positive and coterminal with .
Step 5.2.6.5
Find the period of .
Tap for more steps...
Step 5.2.6.5.1
The period of the function can be calculated using .
Step 5.2.6.5.2
Replace with in the formula for period.
Step 5.2.6.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 5.2.6.5.4
Divide by .
Step 5.2.6.6
Add to every negative angle to get positive angles.
Tap for more steps...
Step 5.2.6.6.1
Add to to find the positive angle.
Step 5.2.6.6.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.6.6.3
Combine fractions.
Tap for more steps...
Step 5.2.6.6.3.1
Combine and .
Step 5.2.6.6.3.2
Combine the numerators over the common denominator.
Step 5.2.6.6.4
Simplify the numerator.
Tap for more steps...
Step 5.2.6.6.4.1
Move to the left of .
Step 5.2.6.6.4.2
Subtract from .
Step 5.2.6.6.5
List the new angles.
Step 5.2.6.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 5.2.7
List all of the solutions.
, for any integer
Step 5.2.8
Consolidate the solutions.
Tap for more steps...
Step 5.2.8.1
Consolidate and to .
, for any integer
Step 5.2.8.2
Consolidate and to .
, for any integer
, for any integer
, for any integer
, for any integer
Step 6
The final solution is all the values that make true.
, for any integer
Step 7
Consolidate the answers.
, for any integer