Algebra Examples

Simplify ((27p^5)(-8p^10))^(1/3)
((27p5)(-8p10))13
Step 1
Rewrite using the commutative property of multiplication.
(27-8p5p10)13
Step 2
Multiply p5 by p10 by adding the exponents.
Tap for more steps...
Step 2.1
Move p10.
(27-8(p10p5))13
Step 2.2
Use the power rule aman=am+n to combine exponents.
(27-8p10+5)13
Step 2.3
Add 10 and 5.
(27-8p15)13
(27-8p15)13
Step 3
Simplify the expression.
Tap for more steps...
Step 3.1
Multiply 27 by -8.
(-216p15)13
Step 3.2
Apply the product rule to -216p15.
(-216)13(p15)13
Step 3.3
Rewrite -216 as (-6)3.
((-6)3)13(p15)13
Step 3.4
Apply the power rule and multiply exponents, (am)n=amn.
(-6)3(13)(p15)13
(-6)3(13)(p15)13
Step 4
Cancel the common factor of 3.
Tap for more steps...
Step 4.1
Cancel the common factor.
(-6)3(13)(p15)13
Step 4.2
Rewrite the expression.
(-6)1(p15)13
(-6)1(p15)13
Step 5
Simplify the expression.
Tap for more steps...
Step 5.1
Evaluate the exponent.
-6(p15)13
Step 5.2
Multiply the exponents in (p15)13.
Tap for more steps...
Step 5.2.1
Apply the power rule and multiply exponents, (am)n=amn.
-6p15(13)
Step 5.2.2
Cancel the common factor of 3.
Tap for more steps...
Step 5.2.2.1
Factor 3 out of 15.
-6p3(5)13
Step 5.2.2.2
Cancel the common factor.
-6p3513
Step 5.2.2.3
Rewrite the expression.
-6p5
-6p5
-6p5
-6p5
 [x2  12  π  xdx ]