Enter a problem...
Algebra Examples
Step 1
The function can be found by evaluating the indefinite integral of the derivative .
Step 2
Step 2.1
Combine and .
Step 2.2
Combine and .
Step 2.3
Move to the left of .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
By the Power Rule, the integral of with respect to is .
Step 5
Step 5.1
Rewrite as .
Step 5.2
Simplify.
Step 5.2.1
Multiply by .
Step 5.2.2
Multiply by .
Step 5.2.3
Cancel the common factor of and .
Step 5.2.3.1
Factor out of .
Step 5.2.3.2
Cancel the common factors.
Step 5.2.3.2.1
Factor out of .
Step 5.2.3.2.2
Cancel the common factor.
Step 5.2.3.2.3
Rewrite the expression.
Step 6
The function if derived from the integral of the derivative of the function. This is valid by the fundamental theorem of calculus.