Enter a problem...
Algebra Examples
3√x+4>3√-x
Step 1
To remove the radical on the left side of the inequality, cube both sides of the inequality.
3√x+43>3√-x3
Step 2
Step 2.1
Use n√ax=axn to rewrite 3√x+4 as (x+4)13.
((x+4)13)3>3√-x3
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify ((x+4)13)3.
Step 2.2.1.1
Multiply the exponents in ((x+4)13)3.
Step 2.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(x+4)13⋅3>3√-x3
Step 2.2.1.1.2
Cancel the common factor of 3.
Step 2.2.1.1.2.1
Cancel the common factor.
(x+4)13⋅3>3√-x3
Step 2.2.1.1.2.2
Rewrite the expression.
(x+4)1>3√-x3
(x+4)1>3√-x3
(x+4)1>3√-x3
Step 2.2.1.2
Simplify.
x+4>3√-x3
x+4>3√-x3
x+4>3√-x3
Step 2.3
Simplify the right side.
Step 2.3.1
Simplify 3√-x3.
Step 2.3.1.1
Rewrite -x as ((-1)3)3x.
Step 2.3.1.1.1
Rewrite -1 as (-1)3.
x+4>3√(-1)3x3
Step 2.3.1.1.2
Rewrite -1 as (-1)3.
x+4>3√((-1)3)3x3
x+4>3√((-1)3)3x3
Step 2.3.1.2
Pull terms out from under the radical.
x+4>((-1)33√x)3
Step 2.3.1.3
Simplify the expression.
Step 2.3.1.3.1
Raise -1 to the power of 3.
x+4>(-3√x)3
Step 2.3.1.3.2
Apply the product rule to -3√x.
x+4>(-1)33√x3
Step 2.3.1.3.3
Raise -1 to the power of 3.
x+4>-3√x3
x+4>-3√x3
Step 2.3.1.4
Rewrite 3√x3 as x.
Step 2.3.1.4.1
Use n√ax=axn to rewrite 3√x as x13.
x+4>-(x13)3
Step 2.3.1.4.2
Apply the power rule and multiply exponents, (am)n=amn.
x+4>-x13⋅3
Step 2.3.1.4.3
Combine 13 and 3.
x+4>-x33
Step 2.3.1.4.4
Cancel the common factor of 3.
Step 2.3.1.4.4.1
Cancel the common factor.
x+4>-x33
Step 2.3.1.4.4.2
Rewrite the expression.
x+4>-x1
x+4>-x1
Step 2.3.1.4.5
Simplify.
x+4>-x
x+4>-x
x+4>-x
x+4>-x
x+4>-x
Step 3
Step 3.1
Move all terms containing x to the left side of the inequality.
Step 3.1.1
Add x to both sides of the inequality.
x+4+x>0
Step 3.1.2
Add x and x.
2x+4>0
2x+4>0
Step 3.2
Subtract 4 from both sides of the inequality.
2x>-4
Step 3.3
Divide each term in 2x>-4 by 2 and simplify.
Step 3.3.1
Divide each term in 2x>-4 by 2.
2x2>-42
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 2.
Step 3.3.2.1.1
Cancel the common factor.
2x2>-42
Step 3.3.2.1.2
Divide x by 1.
x>-42
x>-42
x>-42
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Divide -4 by 2.
x>-2
x>-2
x>-2
x>-2
Step 4
The result can be shown in multiple forms.
Inequality Form:
x>-2
Interval Notation:
(-2,∞)
Step 5