Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite the equation as .
Step 1.2
Combine and .
Step 1.3
Subtract from both sides of the equation.
Step 1.4
Multiply through by the least common denominator , then simplify.
Step 1.4.1
Apply the distributive property.
Step 1.4.2
Simplify.
Step 1.4.2.1
Cancel the common factor of .
Step 1.4.2.1.1
Cancel the common factor.
Step 1.4.2.1.2
Rewrite the expression.
Step 1.4.2.2
Multiply by .
Step 1.4.2.3
Multiply by .
Step 1.4.2.4
Multiply by .
Step 1.4.3
Move .
Step 1.4.4
Move .
Step 1.5
Use the quadratic formula to find the solutions.
Step 1.6
Substitute the values , , and into the quadratic formula and solve for .
Step 1.7
Simplify.
Step 1.7.1
Simplify the numerator.
Step 1.7.1.1
Raise to the power of .
Step 1.7.1.2
Multiply by .
Step 1.7.1.3
Apply the distributive property.
Step 1.7.1.4
Multiply by .
Step 1.7.1.5
Multiply by .
Step 1.7.1.6
Subtract from .
Step 1.7.1.7
Factor out of .
Step 1.7.1.7.1
Factor out of .
Step 1.7.1.7.2
Factor out of .
Step 1.7.1.7.3
Factor out of .
Step 1.7.1.8
Rewrite as .
Step 1.7.1.8.1
Factor out of .
Step 1.7.1.8.2
Rewrite as .
Step 1.7.1.8.3
Add parentheses.
Step 1.7.1.9
Pull terms out from under the radical.
Step 1.7.2
Multiply by .
Step 1.7.3
Simplify .
Step 1.8
Simplify the expression to solve for the portion of the .
Step 1.8.1
Simplify the numerator.
Step 1.8.1.1
Raise to the power of .
Step 1.8.1.2
Multiply by .
Step 1.8.1.3
Apply the distributive property.
Step 1.8.1.4
Multiply by .
Step 1.8.1.5
Multiply by .
Step 1.8.1.6
Subtract from .
Step 1.8.1.7
Factor out of .
Step 1.8.1.7.1
Factor out of .
Step 1.8.1.7.2
Factor out of .
Step 1.8.1.7.3
Factor out of .
Step 1.8.1.8
Rewrite as .
Step 1.8.1.8.1
Factor out of .
Step 1.8.1.8.2
Rewrite as .
Step 1.8.1.8.3
Add parentheses.
Step 1.8.1.9
Pull terms out from under the radical.
Step 1.8.2
Multiply by .
Step 1.8.3
Simplify .
Step 1.8.4
Change the to .
Step 1.9
Simplify the expression to solve for the portion of the .
Step 1.9.1
Simplify the numerator.
Step 1.9.1.1
Raise to the power of .
Step 1.9.1.2
Multiply by .
Step 1.9.1.3
Apply the distributive property.
Step 1.9.1.4
Multiply by .
Step 1.9.1.5
Multiply by .
Step 1.9.1.6
Subtract from .
Step 1.9.1.7
Factor out of .
Step 1.9.1.7.1
Factor out of .
Step 1.9.1.7.2
Factor out of .
Step 1.9.1.7.3
Factor out of .
Step 1.9.1.8
Rewrite as .
Step 1.9.1.8.1
Factor out of .
Step 1.9.1.8.2
Rewrite as .
Step 1.9.1.8.3
Add parentheses.
Step 1.9.1.9
Pull terms out from under the radical.
Step 1.9.2
Multiply by .
Step 1.9.3
Simplify .
Step 1.9.4
Change the to .
Step 1.10
The final answer is the combination of both solutions.
Step 2
To write a polynomial in standard form, simplify and then arrange the terms in descending order.
Step 3
The standard form is .
Step 4