Enter a problem...
Algebra Examples
-6x4y-9x3y2+3x2y3−6x4y−9x3y2+3x2y3
Step 1
Step 1.1
Reorder the expression.
Step 1.1.1
Move -6x4y−6x4y.
-9x3y2+3x2y3-6x4y−9x3y2+3x2y3−6x4y
Step 1.1.2
Reorder -9x3y2−9x3y2 and 3x2y33x2y3.
3x2y3-9x3y2-6x4y3x2y3−9x3y2−6x4y
3x2y3-9x3y2-6x4y3x2y3−9x3y2−6x4y
Step 1.2
Factor -3x2y−3x2y out of 3x2y33x2y3.
-3x2y(-1y2)-9x3y2-6x4y−3x2y(−1y2)−9x3y2−6x4y
Step 1.3
Factor -3x2y−3x2y out of -9x3y2−9x3y2.
-3x2y(-1y2)-3x2y(3xy)-6x4y−3x2y(−1y2)−3x2y(3xy)−6x4y
Step 1.4
Factor -3x2y−3x2y out of -6x4y−6x4y.
-3x2y(-1y2)-3x2y(3xy)-3x2y(2x2)−3x2y(−1y2)−3x2y(3xy)−3x2y(2x2)
Step 1.5
Factor -3x2y−3x2y out of -3x2y(-1y2)-3x2y(3xy)−3x2y(−1y2)−3x2y(3xy).
-3x2y(-1y2+3xy)-3x2y(2x2)−3x2y(−1y2+3xy)−3x2y(2x2)
Step 1.6
Factor -3x2y−3x2y out of -3x2y(-1y2+3xy)-3x2y(2x2)−3x2y(−1y2+3xy)−3x2y(2x2).
-3x2y(-1y2+3xy+2x2)−3x2y(−1y2+3xy+2x2)
-3x2y(-1y2+3xy+2x2)−3x2y(−1y2+3xy+2x2)
Step 2
Rewrite -1y2−1y2 as -y2−y2.
-3x2y(-y2+3xy+2x2)−3x2y(−y2+3xy+2x2)
Step 3
Step 3.1
Factor -1−1 out of -y2+3xy+2x2−y2+3xy+2x2.
Step 3.1.1
Reorder the expression.
Step 3.1.1.1
Move -y2−y2.
-3x2y(3xy+2x2-y2)−3x2y(3xy+2x2−y2)
Step 3.1.1.2
Reorder 3xy3xy and 2x22x2.
-3x2y(2x2+3xy-y2)−3x2y(2x2+3xy−y2)
-3x2y(2x2+3xy-y2)−3x2y(2x2+3xy−y2)
Step 3.1.2
Factor -1−1 out of 2x22x2.
-3x2y(-(-2x2)+3xy-y2)−3x2y(−(−2x2)+3xy−y2)
Step 3.1.3
Factor -1−1 out of 3xy3xy.
-3x2y(-(-2x2)-(-3xy)-y2)−3x2y(−(−2x2)−(−3xy)−y2)
Step 3.1.4
Factor -1−1 out of -y2−y2.
-3x2y(-(-2x2)-(-3xy)-(y2))−3x2y(−(−2x2)−(−3xy)−(y2))
Step 3.1.5
Factor -1−1 out of -(-2x2)-(-3xy)−(−2x2)−(−3xy).
-3x2y(-(-2x2-3xy)-(y2))−3x2y(−(−2x2−3xy)−(y2))
Step 3.1.6
Factor -1−1 out of -(-2x2-3xy)-(y2)−(−2x2−3xy)−(y2).
-3x2y(-(-2x2-3xy+y2))−3x2y(−(−2x2−3xy+y2))
-3x2y(-(-2x2-3xy+y2))−3x2y(−(−2x2−3xy+y2))
Step 3.2
Remove unnecessary parentheses.
-3x2y⋅-1(-2x2-3xy+y2)−3x2y⋅−1(−2x2−3xy+y2)
-3x2y⋅-1(-2x2-3xy+y2)−3x2y⋅−1(−2x2−3xy+y2)
Step 4
Step 4.1
Factor out negative.
-(-3x2y(-2x2-3xy+y2))−(−3x2y(−2x2−3xy+y2))
Step 4.2
Multiply -3−3 by -1−1.
3(x2y(-2x2-3xy+y2))3(x2y(−2x2−3xy+y2))
3(x2y(-2x2-3xy+y2))3(x2y(−2x2−3xy+y2))
Step 5
Remove unnecessary parentheses.
3x2y(-2x2-3xy+y2)3x2y(−2x2−3xy+y2)
Step 6
Step 6.1
Factor -1−1 out of -2x2-3xy+y2−2x2−3xy+y2.
Step 6.1.1
Factor -1−1 out of -2x2−2x2.
3x2y(-(2x2)-3xy+y2)3x2y(−(2x2)−3xy+y2)
Step 6.1.2
Factor -1−1 out of -3xy−3xy.
3x2y(-(2x2)-(3xy)+y2)3x2y(−(2x2)−(3xy)+y2)
Step 6.1.3
Factor -1−1 out of y2y2.
3x2y(-(2x2)-(3xy)-1(-y2))3x2y(−(2x2)−(3xy)−1(−y2))
Step 6.1.4
Factor -1−1 out of -(2x2)-(3xy)−(2x2)−(3xy).
3x2y(-(2x2+3xy)-1(-y2))3x2y(−(2x2+3xy)−1(−y2))
Step 6.1.5
Factor -1−1 out of -(2x2+3xy)-1(-y2)−(2x2+3xy)−1(−y2).
3x2y(-(2x2+3xy-y2))3x2y(−(2x2+3xy−y2))
3x2y(-(2x2+3xy-y2))3x2y(−(2x2+3xy−y2))
Step 6.2
Remove unnecessary parentheses.
3x2y⋅-1(2x2+3xy-y2)3x2y⋅−1(2x2+3xy−y2)
3x2y⋅-1(2x2+3xy-y2)3x2y⋅−1(2x2+3xy−y2)
Step 7
Step 7.1
Factor out negative.
-(3x2y(2x2+3xy-y2))−(3x2y(2x2+3xy−y2))
Step 7.2
Multiply 33 by -1−1.
-3(x2y(2x2+3xy-y2))−3(x2y(2x2+3xy−y2))
-3(x2y(2x2+3xy-y2))−3(x2y(2x2+3xy−y2))
Step 8
Remove unnecessary parentheses.
-3x2y(2x2+3xy-y2)−3x2y(2x2+3xy−y2)