Enter a problem...
Algebra Examples
|2x-1x+3|=1-2x-x-3∣∣∣2x−1x+3∣∣∣=1−2x−x−3
Step 1
Multiply both sides by -x-3.
|2x-1x+3|(-x-3)=1-2x-x-3(-x-3)
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify |2x-1x+3|(-x-3).
Step 2.1.1.1
Apply the distributive property.
|2x-1x+3|(-x)+|2x-1x+3|⋅-3=1-2x-x-3(-x-3)
Step 2.1.1.2
Simplify the expression.
Step 2.1.1.2.1
Rewrite using the commutative property of multiplication.
-|2x-1x+3|x+|2x-1x+3|⋅-3=1-2x-x-3(-x-3)
Step 2.1.1.2.2
Move -3 to the left of |2x-1x+3|.
-|2x-1x+3|x-3⋅|2x-1x+3|=1-2x-x-3(-x-3)
Step 2.1.1.2.3
Reorder factors in -|2x-1x+3|x-3|2x-1x+3|.
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify 1-2x-x-3(-x-3).
Step 2.2.1.1
Multiply 1-2x-x-3 by -x-3.
-x|2x-1x+3|-3|2x-1x+3|=(1-2x)(-x-3)-x-3
Step 2.2.1.2
Cancel the common factor of -x-3.
Step 2.2.1.2.1
Cancel the common factor.
-x|2x-1x+3|-3|2x-1x+3|=(1-2x)(-x-3)-x-3
Step 2.2.1.2.2
Divide 1-2x by 1.
-x|2x-1x+3|-3|2x-1x+3|=1-2x
-x|2x-1x+3|-3|2x-1x+3|=1-2x
Step 2.2.1.3
Reorder 1 and -2x.
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
Step 3
Step 3.1
Factor |2x-1x+3| out of -x|2x-1x+3|-3|2x-1x+3|.
Step 3.1.1
Factor |2x-1x+3| out of -x|2x-1x+3|.
|2x-1x+3|(-x)-3|2x-1x+3|=-2x+1
Step 3.1.2
Factor |2x-1x+3| out of -3|2x-1x+3|.
|2x-1x+3|(-x)+|2x-1x+3|⋅-3=-2x+1
Step 3.1.3
Factor |2x-1x+3| out of |2x-1x+3|(-x)+|2x-1x+3|⋅-3.
|2x-1x+3|(-x-3)=-2x+1
|2x-1x+3|(-x-3)=-2x+1
Step 3.2
Divide each term in |2x-1x+3|(-x-3)=-2x+1 by -x-3 and simplify.
Step 3.2.1
Divide each term in |2x-1x+3|(-x-3)=-2x+1 by -x-3.
|2x-1x+3|(-x-3)-x-3=-2x-x-3+1-x-3
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of -x-3.
Step 3.2.2.1.1
Cancel the common factor.
|2x-1x+3|(-x-3)-x-3=-2x-x-3+1-x-3
Step 3.2.2.1.2
Divide |2x-1x+3| by 1.
|2x-1x+3|=-2x-x-3+1-x-3
|2x-1x+3|=-2x-x-3+1-x-3
|2x-1x+3|=-2x-x-3+1-x-3
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Combine the numerators over the common denominator.
|2x-1x+3|=-2x+1-x-3
Step 3.2.3.2
Factor -1 out of -2x.
|2x-1x+3|=-(2x)+1-x-3
Step 3.2.3.3
Rewrite 1 as -1(-1).
|2x-1x+3|=-(2x)-1(-1)-x-3
Step 3.2.3.4
Factor -1 out of -(2x)-1(-1).
|2x-1x+3|=-(2x-1)-x-3
Step 3.2.3.5
Rewrite -(2x-1) as -1(2x-1).
|2x-1x+3|=-1(2x-1)-x-3
Step 3.2.3.6
Factor -1 out of -x.
|2x-1x+3|=-1(2x-1)-(x)-3
Step 3.2.3.7
Rewrite -3 as -1(3).
|2x-1x+3|=-1(2x-1)-(x)-1(3)
Step 3.2.3.8
Factor -1 out of -(x)-1(3).
|2x-1x+3|=-1(2x-1)-(x+3)
Step 3.2.3.9
Rewrite -(x+3) as -1(x+3).
|2x-1x+3|=-1(2x-1)-1(x+3)
Step 3.2.3.10
Cancel the common factor.
|2x-1x+3|=-1(2x-1)-1(x+3)
Step 3.2.3.11
Rewrite the expression.
|2x-1x+3|=2x-1x+3
|2x-1x+3|=2x-1x+3
|2x-1x+3|=2x-1x+3
Step 3.3
Remove the absolute value term. This creates a ± on the right side of the equation because |x|=±x.
2x-1x+3=±2x-1x+3
Step 3.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.4.1
First, use the positive value of the ± to find the first solution.
2x-1x+3=2x-1x+3
Step 3.4.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
2x-1=2x-1
Step 3.4.3
Move all terms containing x to the left side of the equation.
Step 3.4.3.1
Subtract 2x from both sides of the equation.
2x-1-2x=-1
Step 3.4.3.2
Combine the opposite terms in 2x-1-2x.
Step 3.4.3.2.1
Subtract 2x from 2x.
0-1=-1
Step 3.4.3.2.2
Subtract 1 from 0.
-1=-1
-1=-1
-1=-1
Step 3.4.4
Since -1=-1, the equation will always be true.
All real numbers
Step 3.4.5
Next, use the negative value of the ± to find the second solution.
2x-1x+3=-2x-1x+3
Step 3.4.6
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
2x-1=-(2x-1)
Step 3.4.7
Simplify -(2x-1).
Step 3.4.7.1
Rewrite.
2x-1=0+0-(2x-1)
Step 3.4.7.2
Simplify by adding zeros.
2x-1=-(2x-1)
Step 3.4.7.3
Apply the distributive property.
2x-1=-(2x)--1
Step 3.4.7.4
Multiply.
Step 3.4.7.4.1
Multiply 2 by -1.
2x-1=-2x--1
Step 3.4.7.4.2
Multiply -1 by -1.
2x-1=-2x+1
2x-1=-2x+1
2x-1=-2x+1
Step 3.4.8
Move all terms containing x to the left side of the equation.
Step 3.4.8.1
Add 2x to both sides of the equation.
2x-1+2x=1
Step 3.4.8.2
Add 2x and 2x.
4x-1=1
4x-1=1
Step 3.4.9
Move all terms not containing x to the right side of the equation.
Step 3.4.9.1
Add 1 to both sides of the equation.
4x=1+1
Step 3.4.9.2
Add 1 and 1.
4x=2
4x=2
Step 3.4.10
Divide each term in 4x=2 by 4 and simplify.
Step 3.4.10.1
Divide each term in 4x=2 by 4.
4x4=24
Step 3.4.10.2
Simplify the left side.
Step 3.4.10.2.1
Cancel the common factor of 4.
Step 3.4.10.2.1.1
Cancel the common factor.
4x4=24
Step 3.4.10.2.1.2
Divide x by 1.
x=24
x=24
x=24
Step 3.4.10.3
Simplify the right side.
Step 3.4.10.3.1
Cancel the common factor of 2 and 4.
Step 3.4.10.3.1.1
Factor 2 out of 2.
x=2(1)4
Step 3.4.10.3.1.2
Cancel the common factors.
Step 3.4.10.3.1.2.1
Factor 2 out of 4.
x=2⋅12⋅2
Step 3.4.10.3.1.2.2
Cancel the common factor.
x=2⋅12⋅2
Step 3.4.10.3.1.2.3
Rewrite the expression.
x=12
x=12
x=12
x=12
x=12
Step 3.4.11
The complete solution is the result of both the positive and negative portions of the solution.
x=,12
x=,12
x=,12
Step 4
Verify each of the solutions by substituting them into |2x-1x+3|=1-2x-x-3 and solving.
x=12
Step 5
The result can be shown in multiple forms.
Exact Form:
x=12
Decimal Form:
x=0.5