Algebra Examples

Solve for x |(2x-1)/(x+3)|=(1-2x)/(-x-3)
|2x-1x+3|=1-2x-x-32x1x+3=12xx3
Step 1
Multiply both sides by -x-3.
|2x-1x+3|(-x-3)=1-2x-x-3(-x-3)
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Simplify |2x-1x+3|(-x-3).
Tap for more steps...
Step 2.1.1.1
Apply the distributive property.
|2x-1x+3|(-x)+|2x-1x+3|-3=1-2x-x-3(-x-3)
Step 2.1.1.2
Simplify the expression.
Tap for more steps...
Step 2.1.1.2.1
Rewrite using the commutative property of multiplication.
-|2x-1x+3|x+|2x-1x+3|-3=1-2x-x-3(-x-3)
Step 2.1.1.2.2
Move -3 to the left of |2x-1x+3|.
-|2x-1x+3|x-3|2x-1x+3|=1-2x-x-3(-x-3)
Step 2.1.1.2.3
Reorder factors in -|2x-1x+3|x-3|2x-1x+3|.
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
-x|2x-1x+3|-3|2x-1x+3|=1-2x-x-3(-x-3)
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Simplify 1-2x-x-3(-x-3).
Tap for more steps...
Step 2.2.1.1
Multiply 1-2x-x-3 by -x-3.
-x|2x-1x+3|-3|2x-1x+3|=(1-2x)(-x-3)-x-3
Step 2.2.1.2
Cancel the common factor of -x-3.
Tap for more steps...
Step 2.2.1.2.1
Cancel the common factor.
-x|2x-1x+3|-3|2x-1x+3|=(1-2x)(-x-3)-x-3
Step 2.2.1.2.2
Divide 1-2x by 1.
-x|2x-1x+3|-3|2x-1x+3|=1-2x
-x|2x-1x+3|-3|2x-1x+3|=1-2x
Step 2.2.1.3
Reorder 1 and -2x.
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
-x|2x-1x+3|-3|2x-1x+3|=-2x+1
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Factor |2x-1x+3| out of -x|2x-1x+3|-3|2x-1x+3|.
Tap for more steps...
Step 3.1.1
Factor |2x-1x+3| out of -x|2x-1x+3|.
|2x-1x+3|(-x)-3|2x-1x+3|=-2x+1
Step 3.1.2
Factor |2x-1x+3| out of -3|2x-1x+3|.
|2x-1x+3|(-x)+|2x-1x+3|-3=-2x+1
Step 3.1.3
Factor |2x-1x+3| out of |2x-1x+3|(-x)+|2x-1x+3|-3.
|2x-1x+3|(-x-3)=-2x+1
|2x-1x+3|(-x-3)=-2x+1
Step 3.2
Divide each term in |2x-1x+3|(-x-3)=-2x+1 by -x-3 and simplify.
Tap for more steps...
Step 3.2.1
Divide each term in |2x-1x+3|(-x-3)=-2x+1 by -x-3.
|2x-1x+3|(-x-3)-x-3=-2x-x-3+1-x-3
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of -x-3.
Tap for more steps...
Step 3.2.2.1.1
Cancel the common factor.
|2x-1x+3|(-x-3)-x-3=-2x-x-3+1-x-3
Step 3.2.2.1.2
Divide |2x-1x+3| by 1.
|2x-1x+3|=-2x-x-3+1-x-3
|2x-1x+3|=-2x-x-3+1-x-3
|2x-1x+3|=-2x-x-3+1-x-3
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Combine the numerators over the common denominator.
|2x-1x+3|=-2x+1-x-3
Step 3.2.3.2
Factor -1 out of -2x.
|2x-1x+3|=-(2x)+1-x-3
Step 3.2.3.3
Rewrite 1 as -1(-1).
|2x-1x+3|=-(2x)-1(-1)-x-3
Step 3.2.3.4
Factor -1 out of -(2x)-1(-1).
|2x-1x+3|=-(2x-1)-x-3
Step 3.2.3.5
Rewrite -(2x-1) as -1(2x-1).
|2x-1x+3|=-1(2x-1)-x-3
Step 3.2.3.6
Factor -1 out of -x.
|2x-1x+3|=-1(2x-1)-(x)-3
Step 3.2.3.7
Rewrite -3 as -1(3).
|2x-1x+3|=-1(2x-1)-(x)-1(3)
Step 3.2.3.8
Factor -1 out of -(x)-1(3).
|2x-1x+3|=-1(2x-1)-(x+3)
Step 3.2.3.9
Rewrite -(x+3) as -1(x+3).
|2x-1x+3|=-1(2x-1)-1(x+3)
Step 3.2.3.10
Cancel the common factor.
|2x-1x+3|=-1(2x-1)-1(x+3)
Step 3.2.3.11
Rewrite the expression.
|2x-1x+3|=2x-1x+3
|2x-1x+3|=2x-1x+3
|2x-1x+3|=2x-1x+3
Step 3.3
Remove the absolute value term. This creates a ± on the right side of the equation because |x|=±x.
2x-1x+3=±2x-1x+3
Step 3.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.4.1
First, use the positive value of the ± to find the first solution.
2x-1x+3=2x-1x+3
Step 3.4.2
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
2x-1=2x-1
Step 3.4.3
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 3.4.3.1
Subtract 2x from both sides of the equation.
2x-1-2x=-1
Step 3.4.3.2
Combine the opposite terms in 2x-1-2x.
Tap for more steps...
Step 3.4.3.2.1
Subtract 2x from 2x.
0-1=-1
Step 3.4.3.2.2
Subtract 1 from 0.
-1=-1
-1=-1
-1=-1
Step 3.4.4
Since -1=-1, the equation will always be true.
All real numbers
Step 3.4.5
Next, use the negative value of the ± to find the second solution.
2x-1x+3=-2x-1x+3
Step 3.4.6
Since the expression on each side of the equation has the same denominator, the numerators must be equal.
2x-1=-(2x-1)
Step 3.4.7
Simplify -(2x-1).
Tap for more steps...
Step 3.4.7.1
Rewrite.
2x-1=0+0-(2x-1)
Step 3.4.7.2
Simplify by adding zeros.
2x-1=-(2x-1)
Step 3.4.7.3
Apply the distributive property.
2x-1=-(2x)--1
Step 3.4.7.4
Multiply.
Tap for more steps...
Step 3.4.7.4.1
Multiply 2 by -1.
2x-1=-2x--1
Step 3.4.7.4.2
Multiply -1 by -1.
2x-1=-2x+1
2x-1=-2x+1
2x-1=-2x+1
Step 3.4.8
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 3.4.8.1
Add 2x to both sides of the equation.
2x-1+2x=1
Step 3.4.8.2
Add 2x and 2x.
4x-1=1
4x-1=1
Step 3.4.9
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 3.4.9.1
Add 1 to both sides of the equation.
4x=1+1
Step 3.4.9.2
Add 1 and 1.
4x=2
4x=2
Step 3.4.10
Divide each term in 4x=2 by 4 and simplify.
Tap for more steps...
Step 3.4.10.1
Divide each term in 4x=2 by 4.
4x4=24
Step 3.4.10.2
Simplify the left side.
Tap for more steps...
Step 3.4.10.2.1
Cancel the common factor of 4.
Tap for more steps...
Step 3.4.10.2.1.1
Cancel the common factor.
4x4=24
Step 3.4.10.2.1.2
Divide x by 1.
x=24
x=24
x=24
Step 3.4.10.3
Simplify the right side.
Tap for more steps...
Step 3.4.10.3.1
Cancel the common factor of 2 and 4.
Tap for more steps...
Step 3.4.10.3.1.1
Factor 2 out of 2.
x=2(1)4
Step 3.4.10.3.1.2
Cancel the common factors.
Tap for more steps...
Step 3.4.10.3.1.2.1
Factor 2 out of 4.
x=2122
Step 3.4.10.3.1.2.2
Cancel the common factor.
x=2122
Step 3.4.10.3.1.2.3
Rewrite the expression.
x=12
x=12
x=12
x=12
x=12
Step 3.4.11
The complete solution is the result of both the positive and negative portions of the solution.
x=,12
x=,12
x=,12
Step 4
Verify each of the solutions by substituting them into |2x-1x+3|=1-2x-x-3 and solving.
x=12
Step 5
The result can be shown in multiple forms.
Exact Form:
x=12
Decimal Form:
x=0.5
 [x2  12  π  xdx ]