Algebra Examples

Find the Inverse f(x)=x+2 square root of x-1
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, square both sides of the equation.
Step 3.4
Simplify each side of the equation.
Tap for more steps...
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Tap for more steps...
Step 3.4.2.1
Simplify .
Tap for more steps...
Step 3.4.2.1.1
Apply the product rule to .
Step 3.4.2.1.2
Raise to the power of .
Step 3.4.2.1.3
Multiply the exponents in .
Tap for more steps...
Step 3.4.2.1.3.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.3.2
Cancel the common factor of .
Tap for more steps...
Step 3.4.2.1.3.2.1
Cancel the common factor.
Step 3.4.2.1.3.2.2
Rewrite the expression.
Step 3.4.2.1.4
Simplify.
Step 3.4.2.1.5
Apply the distributive property.
Step 3.4.2.1.6
Multiply by .
Step 3.4.3
Simplify the right side.
Tap for more steps...
Step 3.4.3.1
Simplify .
Tap for more steps...
Step 3.4.3.1.1
Rewrite as .
Step 3.4.3.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.4.3.1.2.1
Apply the distributive property.
Step 3.4.3.1.2.2
Apply the distributive property.
Step 3.4.3.1.2.3
Apply the distributive property.
Step 3.4.3.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.4.3.1.3.1
Simplify each term.
Tap for more steps...
Step 3.4.3.1.3.1.1
Multiply by .
Step 3.4.3.1.3.1.2
Rewrite using the commutative property of multiplication.
Step 3.4.3.1.3.1.3
Rewrite using the commutative property of multiplication.
Step 3.4.3.1.3.1.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.3.1.3.1.4.1
Move .
Step 3.4.3.1.3.1.4.2
Multiply by .
Step 3.4.3.1.3.1.5
Multiply by .
Step 3.4.3.1.3.1.6
Multiply by .
Step 3.4.3.1.3.2
Subtract from .
Tap for more steps...
Step 3.4.3.1.3.2.1
Move .
Step 3.4.3.1.3.2.2
Subtract from .
Step 3.5
Solve for .
Tap for more steps...
Step 3.5.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.5.2
Subtract from both sides of the equation.
Step 3.5.3
Add to both sides of the equation.
Step 3.5.4
Use the quadratic formula to find the solutions.
Step 3.5.5
Substitute the values , , and into the quadratic formula and solve for .
Step 3.5.6
Simplify.
Tap for more steps...
Step 3.5.6.1
Simplify the numerator.
Tap for more steps...
Step 3.5.6.1.1
Apply the distributive property.
Step 3.5.6.1.2
Multiply by .
Step 3.5.6.1.3
Multiply by .
Step 3.5.6.1.4
Add parentheses.
Step 3.5.6.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 3.5.6.1.5.1
Rewrite as .
Step 3.5.6.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.5.6.1.5.2.1
Apply the distributive property.
Step 3.5.6.1.5.2.2
Apply the distributive property.
Step 3.5.6.1.5.2.3
Apply the distributive property.
Step 3.5.6.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 3.5.6.1.5.3.1
Simplify each term.
Tap for more steps...
Step 3.5.6.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.5.6.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.5.6.1.5.3.1.2.1
Move .
Step 3.5.6.1.5.3.1.2.2
Multiply by .
Step 3.5.6.1.5.3.1.3
Multiply by .
Step 3.5.6.1.5.3.1.4
Multiply by .
Step 3.5.6.1.5.3.1.5
Multiply by .
Step 3.5.6.1.5.3.1.6
Multiply by .
Step 3.5.6.1.5.3.2
Add and .
Step 3.5.6.1.6
Factor out of .
Tap for more steps...
Step 3.5.6.1.6.1
Factor out of .
Step 3.5.6.1.6.2
Factor out of .
Step 3.5.6.1.6.3
Factor out of .
Step 3.5.6.1.6.4
Factor out of .
Step 3.5.6.1.6.5
Factor out of .
Step 3.5.6.1.6.6
Factor out of .
Step 3.5.6.1.6.7
Factor out of .
Step 3.5.6.1.7
Replace all occurrences of with .
Step 3.5.6.1.8
Simplify.
Tap for more steps...
Step 3.5.6.1.8.1
Simplify each term.
Tap for more steps...
Step 3.5.6.1.8.1.1
Multiply by .
Step 3.5.6.1.8.1.2
Apply the distributive property.
Step 3.5.6.1.8.1.3
Multiply by .
Step 3.5.6.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 3.5.6.1.8.2.1
Subtract from .
Step 3.5.6.1.8.2.2
Add and .
Step 3.5.6.1.8.2.3
Subtract from .
Step 3.5.6.1.8.2.4
Add and .
Step 3.5.6.1.9
Multiply by .
Step 3.5.6.1.10
Rewrite as .
Tap for more steps...
Step 3.5.6.1.10.1
Rewrite as .
Step 3.5.6.1.10.2
Rewrite as .
Step 3.5.6.1.11
Pull terms out from under the radical.
Step 3.5.6.1.12
Raise to the power of .
Step 3.5.6.2
Multiply by .
Step 3.5.7
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.5.7.1
Simplify the numerator.
Tap for more steps...
Step 3.5.7.1.1
Apply the distributive property.
Step 3.5.7.1.2
Multiply by .
Step 3.5.7.1.3
Multiply by .
Step 3.5.7.1.4
Add parentheses.
Step 3.5.7.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 3.5.7.1.5.1
Rewrite as .
Step 3.5.7.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.5.7.1.5.2.1
Apply the distributive property.
Step 3.5.7.1.5.2.2
Apply the distributive property.
Step 3.5.7.1.5.2.3
Apply the distributive property.
Step 3.5.7.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 3.5.7.1.5.3.1
Simplify each term.
Tap for more steps...
Step 3.5.7.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.5.7.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.5.7.1.5.3.1.2.1
Move .
Step 3.5.7.1.5.3.1.2.2
Multiply by .
Step 3.5.7.1.5.3.1.3
Multiply by .
Step 3.5.7.1.5.3.1.4
Multiply by .
Step 3.5.7.1.5.3.1.5
Multiply by .
Step 3.5.7.1.5.3.1.6
Multiply by .
Step 3.5.7.1.5.3.2
Add and .
Step 3.5.7.1.6
Factor out of .
Tap for more steps...
Step 3.5.7.1.6.1
Factor out of .
Step 3.5.7.1.6.2
Factor out of .
Step 3.5.7.1.6.3
Factor out of .
Step 3.5.7.1.6.4
Factor out of .
Step 3.5.7.1.6.5
Factor out of .
Step 3.5.7.1.6.6
Factor out of .
Step 3.5.7.1.6.7
Factor out of .
Step 3.5.7.1.7
Replace all occurrences of with .
Step 3.5.7.1.8
Simplify.
Tap for more steps...
Step 3.5.7.1.8.1
Simplify each term.
Tap for more steps...
Step 3.5.7.1.8.1.1
Multiply by .
Step 3.5.7.1.8.1.2
Apply the distributive property.
Step 3.5.7.1.8.1.3
Multiply by .
Step 3.5.7.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 3.5.7.1.8.2.1
Subtract from .
Step 3.5.7.1.8.2.2
Add and .
Step 3.5.7.1.8.2.3
Subtract from .
Step 3.5.7.1.8.2.4
Add and .
Step 3.5.7.1.9
Multiply by .
Step 3.5.7.1.10
Rewrite as .
Tap for more steps...
Step 3.5.7.1.10.1
Rewrite as .
Step 3.5.7.1.10.2
Rewrite as .
Step 3.5.7.1.11
Pull terms out from under the radical.
Step 3.5.7.1.12
Raise to the power of .
Step 3.5.7.2
Multiply by .
Step 3.5.7.3
Change the to .
Step 3.5.7.4
Cancel the common factor of and .
Tap for more steps...
Step 3.5.7.4.1
Factor out of .
Step 3.5.7.4.2
Factor out of .
Step 3.5.7.4.3
Factor out of .
Step 3.5.7.4.4
Factor out of .
Step 3.5.7.4.5
Factor out of .
Step 3.5.7.4.6
Cancel the common factors.
Tap for more steps...
Step 3.5.7.4.6.1
Factor out of .
Step 3.5.7.4.6.2
Cancel the common factor.
Step 3.5.7.4.6.3
Rewrite the expression.
Step 3.5.7.4.6.4
Divide by .
Step 3.5.8
Simplify the expression to solve for the portion of the .
Tap for more steps...
Step 3.5.8.1
Simplify the numerator.
Tap for more steps...
Step 3.5.8.1.1
Apply the distributive property.
Step 3.5.8.1.2
Multiply by .
Step 3.5.8.1.3
Multiply by .
Step 3.5.8.1.4
Add parentheses.
Step 3.5.8.1.5
Let . Substitute for all occurrences of .
Tap for more steps...
Step 3.5.8.1.5.1
Rewrite as .
Step 3.5.8.1.5.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.5.8.1.5.2.1
Apply the distributive property.
Step 3.5.8.1.5.2.2
Apply the distributive property.
Step 3.5.8.1.5.2.3
Apply the distributive property.
Step 3.5.8.1.5.3
Simplify and combine like terms.
Tap for more steps...
Step 3.5.8.1.5.3.1
Simplify each term.
Tap for more steps...
Step 3.5.8.1.5.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.5.8.1.5.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.5.8.1.5.3.1.2.1
Move .
Step 3.5.8.1.5.3.1.2.2
Multiply by .
Step 3.5.8.1.5.3.1.3
Multiply by .
Step 3.5.8.1.5.3.1.4
Multiply by .
Step 3.5.8.1.5.3.1.5
Multiply by .
Step 3.5.8.1.5.3.1.6
Multiply by .
Step 3.5.8.1.5.3.2
Add and .
Step 3.5.8.1.6
Factor out of .
Tap for more steps...
Step 3.5.8.1.6.1
Factor out of .
Step 3.5.8.1.6.2
Factor out of .
Step 3.5.8.1.6.3
Factor out of .
Step 3.5.8.1.6.4
Factor out of .
Step 3.5.8.1.6.5
Factor out of .
Step 3.5.8.1.6.6
Factor out of .
Step 3.5.8.1.6.7
Factor out of .
Step 3.5.8.1.7
Replace all occurrences of with .
Step 3.5.8.1.8
Simplify.
Tap for more steps...
Step 3.5.8.1.8.1
Simplify each term.
Tap for more steps...
Step 3.5.8.1.8.1.1
Multiply by .
Step 3.5.8.1.8.1.2
Apply the distributive property.
Step 3.5.8.1.8.1.3
Multiply by .
Step 3.5.8.1.8.2
Combine the opposite terms in .
Tap for more steps...
Step 3.5.8.1.8.2.1
Subtract from .
Step 3.5.8.1.8.2.2
Add and .
Step 3.5.8.1.8.2.3
Subtract from .
Step 3.5.8.1.8.2.4
Add and .
Step 3.5.8.1.9
Multiply by .
Step 3.5.8.1.10
Rewrite as .
Tap for more steps...
Step 3.5.8.1.10.1
Rewrite as .
Step 3.5.8.1.10.2
Rewrite as .
Step 3.5.8.1.11
Pull terms out from under the radical.
Step 3.5.8.1.12
Raise to the power of .
Step 3.5.8.2
Multiply by .
Step 3.5.8.3
Change the to .
Step 3.5.8.4
Cancel the common factor of and .
Tap for more steps...
Step 3.5.8.4.1
Factor out of .
Step 3.5.8.4.2
Factor out of .
Step 3.5.8.4.3
Factor out of .
Step 3.5.8.4.4
Factor out of .
Step 3.5.8.4.5
Factor out of .
Step 3.5.8.4.6
Cancel the common factors.
Tap for more steps...
Step 3.5.8.4.6.1
Factor out of .
Step 3.5.8.4.6.2
Cancel the common factor.
Step 3.5.8.4.6.3
Rewrite the expression.
Step 3.5.8.4.6.4
Divide by .
Step 3.5.9
The final answer is the combination of both solutions.
Step 4
Replace with to show the final answer.
Step 5
Verify if is the inverse of .
Tap for more steps...
Step 5.1
The domain of the inverse is the range of the original function and vice versa. Find the domain and the range of and and compare them.
Step 5.2
Find the range of .
Tap for more steps...
Step 5.2.1
The range is the set of all valid values. Use the graph to find the range.
Interval Notation:
Step 5.3
Find the domain of .
Tap for more steps...
Step 5.3.1
Set the radicand in greater than or equal to to find where the expression is defined.
Step 5.3.2
The domain is all values of that make the expression defined.
Step 5.4
Since the domain of is not equal to the range of , then is not an inverse of .
There is no inverse
There is no inverse
Step 6