Enter a problem...
Algebra Examples
f(x)=x-2x2+3x+2f(x)=x−2x2+3x+2
Step 1
Substitute 00 for xx and find the result for yy.
y=(0)-2(0)2+3(0)+2y=(0)−2(0)2+3(0)+2
Step 2
Step 2.1
Remove parentheses.
y=0-2(0)2+3(0)+2y=0−2(0)2+3(0)+2
Step 2.2
Remove parentheses.
y=0-202+3(0)+2y=0−202+3(0)+2
Step 2.3
Remove parentheses.
y=(0)-2(0)2+3(0)+2y=(0)−2(0)2+3(0)+2
Step 2.4
Simplify (0)-2(0)2+3(0)+2(0)−2(0)2+3(0)+2.
Step 2.4.1
Subtract 22 from 00.
y=-202+3(0)+2y=−202+3(0)+2
Step 2.4.2
Simplify the denominator.
Step 2.4.2.1
Raising 00 to any positive power yields 00.
y=-20+3(0)+2y=−20+3(0)+2
Step 2.4.2.2
Multiply 33 by 00.
y=-20+0+2y=−20+0+2
Step 2.4.2.3
Add 00 and 00.
y=-20+2y=−20+2
Step 2.4.2.4
Add 00 and 22.
y=-22y=−22
y=-22y=−22
Step 2.4.3
Divide -2−2 by 22.
y=-1y=−1
y=-1y=−1
y=-1y=−1
Step 3
Substitute 11 for xx and find the result for yy.
y=(1)-2(1)2+3(1)+2y=(1)−2(1)2+3(1)+2
Step 4
Step 4.1
Remove parentheses.
y=1-2(1)2+3(1)+2y=1−2(1)2+3(1)+2
Step 4.2
Remove parentheses.
y=1-212+3(1)+2y=1−212+3(1)+2
Step 4.3
Remove parentheses.
y=(1)-2(1)2+3(1)+2y=(1)−2(1)2+3(1)+2
Step 4.4
Simplify (1)-2(1)2+3(1)+2(1)−2(1)2+3(1)+2.
Step 4.4.1
Subtract 22 from 11.
y=-112+3(1)+2y=−112+3(1)+2
Step 4.4.2
Simplify the denominator.
Step 4.4.2.1
One to any power is one.
y=-11+3(1)+2y=−11+3(1)+2
Step 4.4.2.2
Multiply 33 by 11.
y=-11+3+2y=−11+3+2
Step 4.4.2.3
Add 11 and 33.
y=-14+2y=−14+2
Step 4.4.2.4
Add 44 and 22.
y=-16y=−16
y=-16y=−16
Step 4.4.3
Move the negative in front of the fraction.
y=-16y=−16
y=-16y=−16
y=-16y=−16
Step 5
Substitute 22 for xx and find the result for yy.
y=(2)-2(2)2+3(2)+2y=(2)−2(2)2+3(2)+2
Step 6
Step 6.1
Remove parentheses.
y=2-2(2)2+3(2)+2y=2−2(2)2+3(2)+2
Step 6.2
Remove parentheses.
y=2-222+3(2)+2y=2−222+3(2)+2
Step 6.3
Remove parentheses.
y=(2)-2(2)2+3(2)+2y=(2)−2(2)2+3(2)+2
Step 6.4
Simplify (2)-2(2)2+3(2)+2(2)−2(2)2+3(2)+2.
Step 6.4.1
Reduce the expression by cancelling the common factors.
Step 6.4.1.1
Cancel the common factor of (2)-2(2)−2 and (2)2+3(2)+2(2)2+3(2)+2.
Step 6.4.1.1.1
Factor 22 out of 22.
y=2⋅1-2(2)2+3(2)+2y=2⋅1−2(2)2+3(2)+2
Step 6.4.1.1.2
Factor 22 out of -2−2.
y=2⋅1+2⋅-1(2)2+3(2)+2y=2⋅1+2⋅−1(2)2+3(2)+2
Step 6.4.1.1.3
Factor 22 out of 2⋅1+2⋅-12⋅1+2⋅−1.
y=2⋅(1-1)(2)2+3(2)+2y=2⋅(1−1)(2)2+3(2)+2
Step 6.4.1.1.4
Cancel the common factors.
Step 6.4.1.1.4.1
Factor 22 out of (2)2(2)2.
y=2⋅(1-1)2⋅2+3(2)+2y=2⋅(1−1)2⋅2+3(2)+2
Step 6.4.1.1.4.2
Factor 22 out of 3(2)3(2).
y=2⋅(1-1)2⋅2+2⋅3+2y=2⋅(1−1)2⋅2+2⋅3+2
Step 6.4.1.1.4.3
Factor 22 out of 2⋅2+2⋅32⋅2+2⋅3.
y=2⋅(1-1)2⋅(2+3)+2y=2⋅(1−1)2⋅(2+3)+2
Step 6.4.1.1.4.4
Factor 22 out of 22.
y=2⋅(1-1)2⋅(2+3)+2(1)y=2⋅(1−1)2⋅(2+3)+2(1)
Step 6.4.1.1.4.5
Factor 22 out of 2⋅(2+3)+2(1)2⋅(2+3)+2(1).
y=2⋅(1-1)2⋅(2+3+1)y=2⋅(1−1)2⋅(2+3+1)
Step 6.4.1.1.4.6
Cancel the common factor.
y=2⋅(1-1)2⋅(2+3+1)
Step 6.4.1.1.4.7
Rewrite the expression.
y=1-12+3+1
y=1-12+3+1
y=1-12+3+1
Step 6.4.1.2
Subtract 1 from 1.
y=02+3+1
y=02+3+1
Step 6.4.2
Simplify the denominator.
Step 6.4.2.1
Add 2 and 3.
y=05+1
Step 6.4.2.2
Add 5 and 1.
y=06
y=06
Step 6.4.3
Divide 0 by 6.
y=0
y=0
y=0
Step 7
This is a table of possible values to use when graphing the equation.
xy0-11-1620
Step 8