Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Add to both sides of the equation.
Step 2
Replace with .
Step 3
Use the double-angle identity to transform to .
Step 4
Subtract from both sides of the equation.
Step 5
Step 5.1
Apply pythagorean identity.
Step 6
Step 6.1
Add to both sides of the equation.
Step 6.2
Replace the with based on the identity.
Step 6.3
Simplify each term.
Step 6.3.1
Apply the distributive property.
Step 6.3.2
Multiply by .
Step 6.3.3
Multiply by .
Step 6.4
Add and .
Step 6.5
Simplify the left side.
Step 6.5.1
Simplify .
Step 6.5.1.1
Move .
Step 6.5.1.2
Apply the cosine double-angle identity.
Step 6.6
Use the double-angle identity to transform to .
Step 6.7
Subtract from both sides of the equation.
Step 6.8
Solve the equation for .
Step 6.8.1
Add to both sides of the equation.
Step 6.8.2
Replace the with based on the identity.
Step 6.8.3
Simplify each term.
Step 6.8.3.1
Apply the distributive property.
Step 6.8.3.2
Multiply by .
Step 6.8.3.3
Multiply by .
Step 6.8.4
Add and .
Step 6.8.5
Simplify the left side.
Step 6.8.5.1
Simplify .
Step 6.8.5.1.1
Move .
Step 6.8.5.1.2
Apply the cosine double-angle identity.
Step 6.8.6
Use the double-angle identity to transform to .
Step 6.8.7
Subtract from both sides of the equation.
Step 6.8.8
Solve the equation for .
Step 6.8.8.1
Add to both sides of the equation.
Step 6.8.8.2
Replace the with based on the identity.
Step 6.8.8.3
Simplify each term.
Step 6.8.8.3.1
Apply the distributive property.
Step 6.8.8.3.2
Multiply by .
Step 6.8.8.3.3
Multiply by .
Step 6.8.8.4
Add and .
Step 6.8.8.5
Simplify the left side.
Step 6.8.8.5.1
Simplify .
Step 6.8.8.5.1.1
Move .
Step 6.8.8.5.1.2
Apply the cosine double-angle identity.
Step 6.8.8.6
Use the double-angle identity to transform to .
Step 6.8.8.7
Subtract from both sides of the equation.
Step 6.8.8.8
Solve the equation for .
Step 6.8.8.8.1
Add to both sides of the equation.
Step 6.8.8.8.2
Replace the with based on the identity.
Step 6.8.8.8.3
Simplify each term.
Step 6.8.8.8.3.1
Apply the distributive property.
Step 6.8.8.8.3.2
Multiply by .
Step 6.8.8.8.3.3
Multiply by .
Step 6.8.8.8.4
Add and .
Step 6.8.8.8.5
Simplify the left side.
Step 6.8.8.8.5.1
Simplify .
Step 6.8.8.8.5.1.1
Move .
Step 6.8.8.8.5.1.2
Apply the cosine double-angle identity.
Step 6.8.8.8.6
Use the double-angle identity to transform to .
Step 6.8.8.8.7
Simplify the left side.
Step 6.8.8.8.7.1
Simplify .
Step 6.8.8.8.7.1.1
Move .
Step 6.8.8.8.7.1.2
Multiply by .
Step 6.8.8.8.7.1.3
Simplify with factoring out.
Step 6.8.8.8.7.1.3.1
Factor out of .
Step 6.8.8.8.7.1.3.2
Factor out of .
Step 6.8.8.8.7.1.3.3
Rewrite as .
Step 6.8.8.8.7.1.4
Apply pythagorean identity.
Step 6.8.8.8.7.1.5
Rewrite as .
Step 6.8.8.8.7.1.6
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.8.8.8.7.1.7
Multiply .
Step 6.8.8.8.7.1.7.1
Raise to the power of .
Step 6.8.8.8.7.1.7.2
Raise to the power of .
Step 6.8.8.8.7.1.7.3
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.7.4
Add and .
Step 6.8.8.8.7.1.8
Multiply .
Step 6.8.8.8.7.1.8.1
Raise to the power of .
Step 6.8.8.8.7.1.8.2
Raise to the power of .
Step 6.8.8.8.7.1.8.3
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.8.4
Add and .
Step 6.8.8.8.7.1.9
Expand using the FOIL Method.
Step 6.8.8.8.7.1.9.1
Apply the distributive property.
Step 6.8.8.8.7.1.9.2
Apply the distributive property.
Step 6.8.8.8.7.1.9.3
Apply the distributive property.
Step 6.8.8.8.7.1.10
Simplify terms.
Step 6.8.8.8.7.1.10.1
Combine the opposite terms in .
Step 6.8.8.8.7.1.10.1.1
Reorder the factors in the terms and .
Step 6.8.8.8.7.1.10.1.2
Add and .
Step 6.8.8.8.7.1.10.1.3
Add and .
Step 6.8.8.8.7.1.10.2
Simplify each term.
Step 6.8.8.8.7.1.10.2.1
Multiply by by adding the exponents.
Step 6.8.8.8.7.1.10.2.1.1
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.10.2.1.2
Add and .
Step 6.8.8.8.7.1.10.2.2
Rewrite using the commutative property of multiplication.
Step 6.8.8.8.7.1.10.2.3
Multiply .
Step 6.8.8.8.7.1.10.2.3.1
Raise to the power of .
Step 6.8.8.8.7.1.10.2.3.2
Raise to the power of .
Step 6.8.8.8.7.1.10.2.3.3
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.10.2.3.4
Add and .
Step 6.8.8.8.8
Solve the equation for .
Step 6.8.8.8.8.1
Replace with .
Step 6.8.8.8.8.2
Solve for .
Step 6.8.8.8.8.2.1
Apply pythagorean identity.
Step 6.8.8.8.8.2.2
Factor .
Step 6.8.8.8.8.2.2.1
Rewrite as .
Step 6.8.8.8.8.2.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.8.8.8.8.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6.8.8.8.8.2.4
Set equal to and solve for .
Step 6.8.8.8.8.2.4.1
Set equal to .
Step 6.8.8.8.8.2.4.2
Solve for .
Step 6.8.8.8.8.2.4.2.1
Replace with .
Step 6.8.8.8.8.2.4.2.2
Solve for .
Step 6.8.8.8.8.2.4.2.2.1
Substitute for .
Step 6.8.8.8.8.2.4.2.2.2
Use the quadratic formula to find the solutions.
Step 6.8.8.8.8.2.4.2.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 6.8.8.8.8.2.4.2.2.4
Simplify.
Step 6.8.8.8.8.2.4.2.2.4.1
Simplify the numerator.
Step 6.8.8.8.8.2.4.2.2.4.1.1
One to any power is one.
Step 6.8.8.8.8.2.4.2.2.4.1.2
Multiply .
Step 6.8.8.8.8.2.4.2.2.4.1.2.1
Multiply by .
Step 6.8.8.8.8.2.4.2.2.4.1.2.2
Multiply by .
Step 6.8.8.8.8.2.4.2.2.4.1.3
Add and .
Step 6.8.8.8.8.2.4.2.2.4.2
Multiply by .
Step 6.8.8.8.8.2.4.2.2.4.3
Simplify .
Step 6.8.8.8.8.2.4.2.2.5
The final answer is the combination of both solutions.
Step 6.8.8.8.8.2.4.2.2.6
Substitute for .
Step 6.8.8.8.8.2.4.2.2.7
Set up each of the solutions to solve for .
Step 6.8.8.8.8.2.4.2.2.8
Solve for in .
Step 6.8.8.8.8.2.4.2.2.8.1
The range of sine is . Since does not fall in this range, there is no solution.
No solution
No solution
Step 6.8.8.8.8.2.4.2.2.9
Solve for in .
Step 6.8.8.8.8.2.4.2.2.9.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 6.8.8.8.8.2.4.2.2.9.2
Simplify the right side.
Step 6.8.8.8.8.2.4.2.2.9.2.1
Evaluate .
Step 6.8.8.8.8.2.4.2.2.9.3
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 6.8.8.8.8.2.4.2.2.9.4
Solve for .
Step 6.8.8.8.8.2.4.2.2.9.4.1
Remove parentheses.
Step 6.8.8.8.8.2.4.2.2.9.4.2
Remove parentheses.
Step 6.8.8.8.8.2.4.2.2.9.4.3
Add and .
Step 6.8.8.8.8.2.4.2.2.9.5
Find the period of .
Step 6.8.8.8.8.2.4.2.2.9.5.1
The period of the function can be calculated using .
Step 6.8.8.8.8.2.4.2.2.9.5.2
Replace with in the formula for period.
Step 6.8.8.8.8.2.4.2.2.9.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 6.8.8.8.8.2.4.2.2.9.5.4
Divide by .
Step 6.8.8.8.8.2.4.2.2.9.6
Add to every negative angle to get positive angles.
Step 6.8.8.8.8.2.4.2.2.9.6.1
Add to to find the positive angle.
Step 6.8.8.8.8.2.4.2.2.9.6.2
Subtract from .
Step 6.8.8.8.8.2.4.2.2.9.6.3
List the new angles.
Step 6.8.8.8.8.2.4.2.2.9.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 6.8.8.8.8.2.4.2.2.10
List all of the solutions.
, for any integer
, for any integer
, for any integer
, for any integer
Step 6.8.8.8.8.2.5
Set equal to and solve for .
Step 6.8.8.8.8.2.5.1
Set equal to .
Step 6.8.8.8.8.2.5.2
Solve for .
Step 6.8.8.8.8.2.5.2.1
Replace with .
Step 6.8.8.8.8.2.5.2.2
Solve for .
Step 6.8.8.8.8.2.5.2.2.1
Substitute for .
Step 6.8.8.8.8.2.5.2.2.2
Use the quadratic formula to find the solutions.
Step 6.8.8.8.8.2.5.2.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 6.8.8.8.8.2.5.2.2.4
Simplify.
Step 6.8.8.8.8.2.5.2.2.4.1
Simplify the numerator.
Step 6.8.8.8.8.2.5.2.2.4.1.1
Raise to the power of .
Step 6.8.8.8.8.2.5.2.2.4.1.2
Multiply .
Step 6.8.8.8.8.2.5.2.2.4.1.2.1
Multiply by .
Step 6.8.8.8.8.2.5.2.2.4.1.2.2
Multiply by .
Step 6.8.8.8.8.2.5.2.2.4.1.3
Add and .
Step 6.8.8.8.8.2.5.2.2.4.2
Multiply by .
Step 6.8.8.8.8.2.5.2.2.4.3
Move the negative in front of the fraction.
Step 6.8.8.8.8.2.5.2.2.5
The final answer is the combination of both solutions.
Step 6.8.8.8.8.2.5.2.2.6
Substitute for .
Step 6.8.8.8.8.2.5.2.2.7
Set up each of the solutions to solve for .
Step 6.8.8.8.8.2.5.2.2.8
Solve for in .
Step 6.8.8.8.8.2.5.2.2.8.1
The range of sine is . Since does not fall in this range, there is no solution.
No solution
No solution
Step 6.8.8.8.8.2.5.2.2.9
Solve for in .
Step 6.8.8.8.8.2.5.2.2.9.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 6.8.8.8.8.2.5.2.2.9.2
Simplify the right side.
Step 6.8.8.8.8.2.5.2.2.9.2.1
Evaluate .
Step 6.8.8.8.8.2.5.2.2.9.3
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 6.8.8.8.8.2.5.2.2.9.4
Simplify the expression to find the second solution.
Step 6.8.8.8.8.2.5.2.2.9.4.1
Subtract from .
Step 6.8.8.8.8.2.5.2.2.9.4.2
The resulting angle of is positive, less than , and coterminal with .
Step 6.8.8.8.8.2.5.2.2.9.5
Find the period of .
Step 6.8.8.8.8.2.5.2.2.9.5.1
The period of the function can be calculated using .
Step 6.8.8.8.8.2.5.2.2.9.5.2
Replace with in the formula for period.
Step 6.8.8.8.8.2.5.2.2.9.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 6.8.8.8.8.2.5.2.2.9.5.4
Divide by .
Step 6.8.8.8.8.2.5.2.2.9.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 6.8.8.8.8.2.5.2.2.10
List all of the solutions.
, for any integer
, for any integer
, for any integer
, for any integer
Step 6.8.8.8.8.2.6
The final solution is all the values that make true.
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
Step 7
Step 7.1
Consolidate and to .
, for any integer
Step 7.2
Consolidate and to .
, for any integer
, for any integer