Algebra Examples

Solve for u cos(2u)=cos(u)^2-sin(u)^2
Step 1
Move all the expressions to the left side of the equation.
Tap for more steps...
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Add to both sides of the equation.
Step 2
Replace with .
Step 3
Use the double-angle identity to transform to .
Step 4
Subtract from both sides of the equation.
Step 5
Simplify the left side.
Tap for more steps...
Step 5.1
Apply pythagorean identity.
Step 6
Solve the equation for .
Tap for more steps...
Step 6.1
Add to both sides of the equation.
Step 6.2
Replace the with based on the identity.
Step 6.3
Simplify each term.
Tap for more steps...
Step 6.3.1
Apply the distributive property.
Step 6.3.2
Multiply by .
Step 6.3.3
Multiply by .
Step 6.4
Add and .
Step 6.5
Simplify the left side.
Tap for more steps...
Step 6.5.1
Simplify .
Tap for more steps...
Step 6.5.1.1
Move .
Step 6.5.1.2
Apply the cosine double-angle identity.
Step 6.6
Use the double-angle identity to transform to .
Step 6.7
Subtract from both sides of the equation.
Step 6.8
Solve the equation for .
Tap for more steps...
Step 6.8.1
Add to both sides of the equation.
Step 6.8.2
Replace the with based on the identity.
Step 6.8.3
Simplify each term.
Tap for more steps...
Step 6.8.3.1
Apply the distributive property.
Step 6.8.3.2
Multiply by .
Step 6.8.3.3
Multiply by .
Step 6.8.4
Add and .
Step 6.8.5
Simplify the left side.
Tap for more steps...
Step 6.8.5.1
Simplify .
Tap for more steps...
Step 6.8.5.1.1
Move .
Step 6.8.5.1.2
Apply the cosine double-angle identity.
Step 6.8.6
Use the double-angle identity to transform to .
Step 6.8.7
Subtract from both sides of the equation.
Step 6.8.8
Solve the equation for .
Tap for more steps...
Step 6.8.8.1
Add to both sides of the equation.
Step 6.8.8.2
Replace the with based on the identity.
Step 6.8.8.3
Simplify each term.
Tap for more steps...
Step 6.8.8.3.1
Apply the distributive property.
Step 6.8.8.3.2
Multiply by .
Step 6.8.8.3.3
Multiply by .
Step 6.8.8.4
Add and .
Step 6.8.8.5
Simplify the left side.
Tap for more steps...
Step 6.8.8.5.1
Simplify .
Tap for more steps...
Step 6.8.8.5.1.1
Move .
Step 6.8.8.5.1.2
Apply the cosine double-angle identity.
Step 6.8.8.6
Use the double-angle identity to transform to .
Step 6.8.8.7
Subtract from both sides of the equation.
Step 6.8.8.8
Solve the equation for .
Tap for more steps...
Step 6.8.8.8.1
Add to both sides of the equation.
Step 6.8.8.8.2
Replace the with based on the identity.
Step 6.8.8.8.3
Simplify each term.
Tap for more steps...
Step 6.8.8.8.3.1
Apply the distributive property.
Step 6.8.8.8.3.2
Multiply by .
Step 6.8.8.8.3.3
Multiply by .
Step 6.8.8.8.4
Add and .
Step 6.8.8.8.5
Simplify the left side.
Tap for more steps...
Step 6.8.8.8.5.1
Simplify .
Tap for more steps...
Step 6.8.8.8.5.1.1
Move .
Step 6.8.8.8.5.1.2
Apply the cosine double-angle identity.
Step 6.8.8.8.6
Use the double-angle identity to transform to .
Step 6.8.8.8.7
Simplify the left side.
Tap for more steps...
Step 6.8.8.8.7.1
Simplify .
Tap for more steps...
Step 6.8.8.8.7.1.1
Move .
Step 6.8.8.8.7.1.2
Multiply by .
Step 6.8.8.8.7.1.3
Simplify with factoring out.
Tap for more steps...
Step 6.8.8.8.7.1.3.1
Factor out of .
Step 6.8.8.8.7.1.3.2
Factor out of .
Step 6.8.8.8.7.1.3.3
Rewrite as .
Step 6.8.8.8.7.1.4
Apply pythagorean identity.
Step 6.8.8.8.7.1.5
Rewrite as .
Step 6.8.8.8.7.1.6
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.8.8.8.7.1.7
Multiply .
Tap for more steps...
Step 6.8.8.8.7.1.7.1
Raise to the power of .
Step 6.8.8.8.7.1.7.2
Raise to the power of .
Step 6.8.8.8.7.1.7.3
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.7.4
Add and .
Step 6.8.8.8.7.1.8
Multiply .
Tap for more steps...
Step 6.8.8.8.7.1.8.1
Raise to the power of .
Step 6.8.8.8.7.1.8.2
Raise to the power of .
Step 6.8.8.8.7.1.8.3
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.8.4
Add and .
Step 6.8.8.8.7.1.9
Expand using the FOIL Method.
Tap for more steps...
Step 6.8.8.8.7.1.9.1
Apply the distributive property.
Step 6.8.8.8.7.1.9.2
Apply the distributive property.
Step 6.8.8.8.7.1.9.3
Apply the distributive property.
Step 6.8.8.8.7.1.10
Simplify terms.
Tap for more steps...
Step 6.8.8.8.7.1.10.1
Combine the opposite terms in .
Tap for more steps...
Step 6.8.8.8.7.1.10.1.1
Reorder the factors in the terms and .
Step 6.8.8.8.7.1.10.1.2
Add and .
Step 6.8.8.8.7.1.10.1.3
Add and .
Step 6.8.8.8.7.1.10.2
Simplify each term.
Tap for more steps...
Step 6.8.8.8.7.1.10.2.1
Multiply by by adding the exponents.
Tap for more steps...
Step 6.8.8.8.7.1.10.2.1.1
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.10.2.1.2
Add and .
Step 6.8.8.8.7.1.10.2.2
Rewrite using the commutative property of multiplication.
Step 6.8.8.8.7.1.10.2.3
Multiply .
Tap for more steps...
Step 6.8.8.8.7.1.10.2.3.1
Raise to the power of .
Step 6.8.8.8.7.1.10.2.3.2
Raise to the power of .
Step 6.8.8.8.7.1.10.2.3.3
Use the power rule to combine exponents.
Step 6.8.8.8.7.1.10.2.3.4
Add and .
Step 6.8.8.8.8
Solve the equation for .
Tap for more steps...
Step 6.8.8.8.8.1
Replace with .
Step 6.8.8.8.8.2
Solve for .
Tap for more steps...
Step 6.8.8.8.8.2.1
Apply pythagorean identity.
Step 6.8.8.8.8.2.2
Factor .
Tap for more steps...
Step 6.8.8.8.8.2.2.1
Rewrite as .
Step 6.8.8.8.8.2.2.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 6.8.8.8.8.2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 6.8.8.8.8.2.4
Set equal to and solve for .
Tap for more steps...
Step 6.8.8.8.8.2.4.1
Set equal to .
Step 6.8.8.8.8.2.4.2
Solve for .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.1
Replace with .
Step 6.8.8.8.8.2.4.2.2
Solve for .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.1
Substitute for .
Step 6.8.8.8.8.2.4.2.2.2
Use the quadratic formula to find the solutions.
Step 6.8.8.8.8.2.4.2.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 6.8.8.8.8.2.4.2.2.4
Simplify.
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.4.1
Simplify the numerator.
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.4.1.1
One to any power is one.
Step 6.8.8.8.8.2.4.2.2.4.1.2
Multiply .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.4.1.2.1
Multiply by .
Step 6.8.8.8.8.2.4.2.2.4.1.2.2
Multiply by .
Step 6.8.8.8.8.2.4.2.2.4.1.3
Add and .
Step 6.8.8.8.8.2.4.2.2.4.2
Multiply by .
Step 6.8.8.8.8.2.4.2.2.4.3
Simplify .
Step 6.8.8.8.8.2.4.2.2.5
The final answer is the combination of both solutions.
Step 6.8.8.8.8.2.4.2.2.6
Substitute for .
Step 6.8.8.8.8.2.4.2.2.7
Set up each of the solutions to solve for .
Step 6.8.8.8.8.2.4.2.2.8
Solve for in .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.8.1
The range of sine is . Since does not fall in this range, there is no solution.
No solution
No solution
Step 6.8.8.8.8.2.4.2.2.9
Solve for in .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.9.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 6.8.8.8.8.2.4.2.2.9.2
Simplify the right side.
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.9.2.1
Evaluate .
Step 6.8.8.8.8.2.4.2.2.9.3
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 6.8.8.8.8.2.4.2.2.9.4
Solve for .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.9.4.1
Remove parentheses.
Step 6.8.8.8.8.2.4.2.2.9.4.2
Remove parentheses.
Step 6.8.8.8.8.2.4.2.2.9.4.3
Add and .
Step 6.8.8.8.8.2.4.2.2.9.5
Find the period of .
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.9.5.1
The period of the function can be calculated using .
Step 6.8.8.8.8.2.4.2.2.9.5.2
Replace with in the formula for period.
Step 6.8.8.8.8.2.4.2.2.9.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 6.8.8.8.8.2.4.2.2.9.5.4
Divide by .
Step 6.8.8.8.8.2.4.2.2.9.6
Add to every negative angle to get positive angles.
Tap for more steps...
Step 6.8.8.8.8.2.4.2.2.9.6.1
Add to to find the positive angle.
Step 6.8.8.8.8.2.4.2.2.9.6.2
Subtract from .
Step 6.8.8.8.8.2.4.2.2.9.6.3
List the new angles.
Step 6.8.8.8.8.2.4.2.2.9.7
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 6.8.8.8.8.2.4.2.2.10
List all of the solutions.
, for any integer
, for any integer
, for any integer
, for any integer
Step 6.8.8.8.8.2.5
Set equal to and solve for .
Tap for more steps...
Step 6.8.8.8.8.2.5.1
Set equal to .
Step 6.8.8.8.8.2.5.2
Solve for .
Tap for more steps...
Step 6.8.8.8.8.2.5.2.1
Replace with .
Step 6.8.8.8.8.2.5.2.2
Solve for .
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.1
Substitute for .
Step 6.8.8.8.8.2.5.2.2.2
Use the quadratic formula to find the solutions.
Step 6.8.8.8.8.2.5.2.2.3
Substitute the values , , and into the quadratic formula and solve for .
Step 6.8.8.8.8.2.5.2.2.4
Simplify.
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.4.1
Simplify the numerator.
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.4.1.1
Raise to the power of .
Step 6.8.8.8.8.2.5.2.2.4.1.2
Multiply .
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.4.1.2.1
Multiply by .
Step 6.8.8.8.8.2.5.2.2.4.1.2.2
Multiply by .
Step 6.8.8.8.8.2.5.2.2.4.1.3
Add and .
Step 6.8.8.8.8.2.5.2.2.4.2
Multiply by .
Step 6.8.8.8.8.2.5.2.2.4.3
Move the negative in front of the fraction.
Step 6.8.8.8.8.2.5.2.2.5
The final answer is the combination of both solutions.
Step 6.8.8.8.8.2.5.2.2.6
Substitute for .
Step 6.8.8.8.8.2.5.2.2.7
Set up each of the solutions to solve for .
Step 6.8.8.8.8.2.5.2.2.8
Solve for in .
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.8.1
The range of sine is . Since does not fall in this range, there is no solution.
No solution
No solution
Step 6.8.8.8.8.2.5.2.2.9
Solve for in .
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.9.1
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 6.8.8.8.8.2.5.2.2.9.2
Simplify the right side.
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.9.2.1
Evaluate .
Step 6.8.8.8.8.2.5.2.2.9.3
The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from , to find a reference angle. Next, add this reference angle to to find the solution in the third quadrant.
Step 6.8.8.8.8.2.5.2.2.9.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.9.4.1
Subtract from .
Step 6.8.8.8.8.2.5.2.2.9.4.2
The resulting angle of is positive, less than , and coterminal with .
Step 6.8.8.8.8.2.5.2.2.9.5
Find the period of .
Tap for more steps...
Step 6.8.8.8.8.2.5.2.2.9.5.1
The period of the function can be calculated using .
Step 6.8.8.8.8.2.5.2.2.9.5.2
Replace with in the formula for period.
Step 6.8.8.8.8.2.5.2.2.9.5.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 6.8.8.8.8.2.5.2.2.9.5.4
Divide by .
Step 6.8.8.8.8.2.5.2.2.9.6
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 6.8.8.8.8.2.5.2.2.10
List all of the solutions.
, for any integer
, for any integer
, for any integer
, for any integer
Step 6.8.8.8.8.2.6
The final solution is all the values that make true.
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
, for any integer
Step 7
Consolidate the answers.
Tap for more steps...
Step 7.1
Consolidate and to .
, for any integer
Step 7.2
Consolidate and to .
, for any integer
, for any integer