Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
To remove the radical on the left side of the equation, raise both sides of the equation to the power of .
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use to rewrite as .
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Apply basic rules of exponents.
Step 3.3.2.1.1.1
Apply the product rule to .
Step 3.3.2.1.1.2
Multiply the exponents in .
Step 3.3.2.1.1.2.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.1.2.2
Combine and .
Step 3.3.2.1.2
Combine and .
Step 3.3.2.1.3
Use the power rule to distribute the exponent.
Step 3.3.2.1.3.1
Apply the product rule to .
Step 3.3.2.1.3.2
Apply the product rule to .
Step 3.3.2.1.4
Simplify the numerator.
Step 3.3.2.1.4.1
Raise to the power of .
Step 3.3.2.1.4.2
Multiply the exponents in .
Step 3.3.2.1.4.2.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.4.2.2
Cancel the common factor of .
Step 3.3.2.1.4.2.2.1
Cancel the common factor.
Step 3.3.2.1.4.2.2.2
Rewrite the expression.
Step 3.3.2.1.5
Simplify the denominator.
Step 3.3.2.1.5.1
Multiply the exponents in .
Step 3.3.2.1.5.1.1
Apply the power rule and multiply exponents, .
Step 3.3.2.1.5.1.2
Cancel the common factor of .
Step 3.3.2.1.5.1.2.1
Cancel the common factor.
Step 3.3.2.1.5.1.2.2
Rewrite the expression.
Step 3.3.2.1.5.2
Evaluate the exponent.
Step 3.4
Solve for .
Step 3.4.1
Multiply both sides of the equation by .
Step 3.4.2
Simplify both sides of the equation.
Step 3.4.2.1
Simplify the left side.
Step 3.4.2.1.1
Simplify .
Step 3.4.2.1.1.1
Combine.
Step 3.4.2.1.1.2
Cancel the common factor of .
Step 3.4.2.1.1.2.1
Cancel the common factor.
Step 3.4.2.1.1.2.2
Rewrite the expression.
Step 3.4.2.1.1.3
Cancel the common factor of .
Step 3.4.2.1.1.3.1
Cancel the common factor.
Step 3.4.2.1.1.3.2
Divide by .
Step 3.4.2.2
Simplify the right side.
Step 3.4.2.2.1
Combine and .
Step 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4.4
Simplify .
Step 3.4.4.1
Rewrite as .
Step 3.4.4.1.1
Factor the perfect power out of .
Step 3.4.4.1.2
Factor the perfect power out of .
Step 3.4.4.1.3
Rearrange the fraction .
Step 3.4.4.2
Pull terms out from under the radical.
Step 3.4.4.3
Rewrite as .
Step 3.4.4.4
Combine.
Step 3.4.4.5
Multiply by .
Step 3.4.4.6
Multiply by .
Step 3.4.4.7
Combine and simplify the denominator.
Step 3.4.4.7.1
Multiply by .
Step 3.4.4.7.2
Move .
Step 3.4.4.7.3
Raise to the power of .
Step 3.4.4.7.4
Use the power rule to combine exponents.
Step 3.4.4.7.5
Add and .
Step 3.4.4.7.6
Rewrite as .
Step 3.4.4.7.6.1
Use to rewrite as .
Step 3.4.4.7.6.2
Apply the power rule and multiply exponents, .
Step 3.4.4.7.6.3
Combine and .
Step 3.4.4.7.6.4
Cancel the common factor of .
Step 3.4.4.7.6.4.1
Cancel the common factor.
Step 3.4.4.7.6.4.2
Rewrite the expression.
Step 3.4.4.7.6.5
Evaluate the exponent.
Step 3.4.4.8
Simplify the numerator.
Step 3.4.4.8.1
Rewrite as .
Step 3.4.4.8.2
Raise to the power of .
Step 3.4.4.8.3
Rewrite as .
Step 3.4.4.8.3.1
Factor out of .
Step 3.4.4.8.3.2
Rewrite as .
Step 3.4.4.8.4
Pull terms out from under the radical.
Step 3.4.4.8.5
Combine exponents.
Step 3.4.4.8.5.1
Combine using the product rule for radicals.
Step 3.4.4.8.5.2
Multiply by .
Step 3.4.4.9
Reduce the expression by cancelling the common factors.
Step 3.4.4.9.1
Multiply by .
Step 3.4.4.9.2
Cancel the common factor of and .
Step 3.4.4.9.2.1
Factor out of .
Step 3.4.4.9.2.2
Cancel the common factors.
Step 3.4.4.9.2.2.1
Factor out of .
Step 3.4.4.9.2.2.2
Cancel the common factor.
Step 3.4.4.9.2.2.3
Rewrite the expression.
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Apply the product rule to .
Step 5.2.3.2
Raise to the power of .
Step 5.2.3.3
Rewrite as .
Step 5.2.3.4
Simplify the numerator.
Step 5.2.3.4.1
Factor out .
Step 5.2.3.4.2
Pull terms out from under the radical.
Step 5.2.3.5
Multiply by .
Step 5.2.3.6
Combine and simplify the denominator.
Step 5.2.3.6.1
Multiply by .
Step 5.2.3.6.2
Raise to the power of .
Step 5.2.3.6.3
Use the power rule to combine exponents.
Step 5.2.3.6.4
Add and .
Step 5.2.3.6.5
Rewrite as .
Step 5.2.3.6.5.1
Use to rewrite as .
Step 5.2.3.6.5.2
Apply the power rule and multiply exponents, .
Step 5.2.3.6.5.3
Combine and .
Step 5.2.3.6.5.4
Cancel the common factor of .
Step 5.2.3.6.5.4.1
Cancel the common factor.
Step 5.2.3.6.5.4.2
Rewrite the expression.
Step 5.2.3.6.5.5
Evaluate the exponent.
Step 5.2.3.7
Simplify the numerator.
Step 5.2.3.7.1
Rewrite as .
Step 5.2.3.7.2
Raise to the power of .
Step 5.2.3.7.3
Combine using the product rule for radicals.
Step 5.2.3.8
Use the power rule to distribute the exponent.
Step 5.2.3.8.1
Apply the product rule to .
Step 5.2.3.8.2
Apply the product rule to .
Step 5.2.3.9
Simplify the numerator.
Step 5.2.3.9.1
Rewrite as .
Step 5.2.3.9.1.1
Use to rewrite as .
Step 5.2.3.9.1.2
Apply the power rule and multiply exponents, .
Step 5.2.3.9.1.3
Combine and .
Step 5.2.3.9.1.4
Cancel the common factor of .
Step 5.2.3.9.1.4.1
Cancel the common factor.
Step 5.2.3.9.1.4.2
Rewrite the expression.
Step 5.2.3.9.1.5
Simplify.
Step 5.2.3.9.2
Multiply by by adding the exponents.
Step 5.2.3.9.2.1
Move .
Step 5.2.3.9.2.2
Use the power rule to combine exponents.
Step 5.2.3.9.2.3
Add and .
Step 5.2.3.10
Raise to the power of .
Step 5.2.3.11
Cancel the common factor of and .
Step 5.2.3.11.1
Factor out of .
Step 5.2.3.11.2
Cancel the common factors.
Step 5.2.3.11.2.1
Factor out of .
Step 5.2.3.11.2.2
Cancel the common factor.
Step 5.2.3.11.2.3
Rewrite the expression.
Step 5.2.3.12
Combine exponents.
Step 5.2.3.12.1
Multiply by .
Step 5.2.3.12.2
Combine and .
Step 5.2.3.13
Reduce the expression by cancelling the common factors.
Step 5.2.3.13.1
Reduce the expression by cancelling the common factors.
Step 5.2.3.13.1.1
Factor out of .
Step 5.2.3.13.1.2
Factor out of .
Step 5.2.3.13.1.3
Cancel the common factor.
Step 5.2.3.13.1.4
Rewrite the expression.
Step 5.2.3.13.2
Divide by .
Step 5.2.3.14
Rewrite as .
Step 5.2.3.15
Pull terms out from under the radical, assuming real numbers.
Step 5.2.4
Cancel the common factor of .
Step 5.2.4.1
Cancel the common factor.
Step 5.2.4.2
Divide by .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Apply the product rule to .
Step 5.3.4
Multiply the numerator by the reciprocal of the denominator.
Step 5.3.5
Combine.
Step 5.3.6
Simplify the expression.
Step 5.3.6.1
Multiply by .
Step 5.3.6.2
Raise to the power of .
Step 5.3.7
Rewrite as .
Step 5.3.7.1
Use to rewrite as .
Step 5.3.7.2
Apply the power rule and multiply exponents, .
Step 5.3.7.3
Combine and .
Step 5.3.7.4
Cancel the common factor of .
Step 5.3.7.4.1
Cancel the common factor.
Step 5.3.7.4.2
Rewrite the expression.
Step 5.3.7.5
Simplify.
Step 5.3.8
Multiply by .
Step 5.3.9
Cancel the common factor of and .
Step 5.3.9.1
Factor out of .
Step 5.3.9.2
Cancel the common factors.
Step 5.3.9.2.1
Factor out of .
Step 5.3.9.2.2
Cancel the common factor.
Step 5.3.9.2.3
Rewrite the expression.
Step 5.3.10
Rewrite as .
Step 5.3.11
Rewrite as .
Step 5.3.12
Pull terms out from under the radical, assuming real numbers.
Step 5.3.13
Cancel the common factor of .
Step 5.3.13.1
Cancel the common factor.
Step 5.3.13.2
Rewrite the expression.
Step 5.4
Since and , then is the inverse of .