Enter a problem...
Algebra Examples
f(x)=45√x77f(x)=45√x77
Step 1
Write f(x)=45√x77 as an equation.
y=45√x77
Step 2
Interchange the variables.
x=45√y77
Step 3
Step 3.1
Rewrite the equation as 45√y77=x.
45√y77=x
Step 3.2
To remove the radical on the left side of the equation, raise both sides of the equation to the power of 5.
(45√y77)5=x5
Step 3.3
Simplify each side of the equation.
Step 3.3.1
Use n√ax=axn to rewrite 5√y77 as (y77)15.
(4(y77)15)5=x5
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Simplify (4(y77)15)5.
Step 3.3.2.1.1
Apply basic rules of exponents.
Step 3.3.2.1.1.1
Apply the product rule to y77.
(4(y7)15715)5=x5
Step 3.3.2.1.1.2
Multiply the exponents in (y7)15.
Step 3.3.2.1.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
(4y7(15)715)5=x5
Step 3.3.2.1.1.2.2
Combine 7 and 15.
(4y75715)5=x5
(4y75715)5=x5
(4y75715)5=x5
Step 3.3.2.1.2
Combine 4 and y75715.
(4y75715)5=x5
Step 3.3.2.1.3
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.3.2.1.3.1
Apply the product rule to 4y75715.
(4y75)5(715)5=x5
Step 3.3.2.1.3.2
Apply the product rule to 4y75.
45(y75)5(715)5=x5
45(y75)5(715)5=x5
Step 3.3.2.1.4
Simplify the numerator.
Step 3.3.2.1.4.1
Raise 4 to the power of 5.
1024(y75)5(715)5=x5
Step 3.3.2.1.4.2
Multiply the exponents in (y75)5.
Step 3.3.2.1.4.2.1
Apply the power rule and multiply exponents, (am)n=amn.
1024y75⋅5(715)5=x5
Step 3.3.2.1.4.2.2
Cancel the common factor of 5.
Step 3.3.2.1.4.2.2.1
Cancel the common factor.
1024y75⋅5(715)5=x5
Step 3.3.2.1.4.2.2.2
Rewrite the expression.
1024y7(715)5=x5
1024y7(715)5=x5
1024y7(715)5=x5
1024y7(715)5=x5
Step 3.3.2.1.5
Simplify the denominator.
Step 3.3.2.1.5.1
Multiply the exponents in (715)5.
Step 3.3.2.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
1024y7715⋅5=x5
Step 3.3.2.1.5.1.2
Cancel the common factor of 5.
Step 3.3.2.1.5.1.2.1
Cancel the common factor.
1024y7715⋅5=x5
Step 3.3.2.1.5.1.2.2
Rewrite the expression.
1024y771=x5
1024y771=x5
1024y771=x5
Step 3.3.2.1.5.2
Evaluate the exponent.
1024y77=x5
1024y77=x5
1024y77=x5
1024y77=x5
1024y77=x5
Step 3.4
Solve for y.
Step 3.4.1
Multiply both sides of the equation by 71024.
71024⋅1024y77=71024x5
Step 3.4.2
Simplify both sides of the equation.
Step 3.4.2.1
Simplify the left side.
Step 3.4.2.1.1
Simplify 71024⋅1024y77.
Step 3.4.2.1.1.1
Combine.
7(1024y7)1024⋅7=71024x5
Step 3.4.2.1.1.2
Cancel the common factor of 7.
Step 3.4.2.1.1.2.1
Cancel the common factor.
7(1024y7)1024⋅7=71024x5
Step 3.4.2.1.1.2.2
Rewrite the expression.
1024y71024=71024x5
1024y71024=71024x5
Step 3.4.2.1.1.3
Cancel the common factor of 1024.
Step 3.4.2.1.1.3.1
Cancel the common factor.
1024y71024=71024x5
Step 3.4.2.1.1.3.2
Divide y7 by 1.
y7=71024x5
y7=71024x5
y7=71024x5
y7=71024x5
Step 3.4.2.2
Simplify the right side.
Step 3.4.2.2.1
Combine 71024 and x5.
y7=7x51024
y7=7x51024
y7=7x51024
Step 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=7√7x51024
Step 3.4.4
Simplify 7√7x51024.
Step 3.4.4.1
Rewrite 7x51024 as (12)77x58.
Step 3.4.4.1.1
Factor the perfect power 17 out of 7x5.
y=7√17(7x5)1024
Step 3.4.4.1.2
Factor the perfect power 27 out of 1024.
y=7√17(7x5)27⋅8
Step 3.4.4.1.3
Rearrange the fraction 17(7x5)27⋅8.
y=7√(12)77x58
y=7√(12)77x58
Step 3.4.4.2
Pull terms out from under the radical.
y=127√7x58
Step 3.4.4.3
Rewrite 7√7x58 as 7√7x57√8.
y=12⋅7√7x57√8
Step 3.4.4.4
Combine.
y=17√7x527√8
Step 3.4.4.5
Multiply 7√7x5 by 1.
y=7√7x527√8
Step 3.4.4.6
Multiply 7√7x527√8 by 7√867√86.
y=7√7x527√8⋅7√867√86
Step 3.4.4.7
Combine and simplify the denominator.
Step 3.4.4.7.1
Multiply 7√7x527√8 by 7√867√86.
y=7√7x57√8627√87√86
Step 3.4.4.7.2
Move 7√8.
y=7√7x57√862(7√87√86)
Step 3.4.4.7.3
Raise 7√8 to the power of 1.
y=7√7x57√862(7√817√86)
Step 3.4.4.7.4
Use the power rule aman=am+n to combine exponents.
y=7√7x57√8627√81+6
Step 3.4.4.7.5
Add 1 and 6.
y=7√7x57√8627√87
Step 3.4.4.7.6
Rewrite 7√87 as 8.
Step 3.4.4.7.6.1
Use n√ax=axn to rewrite 7√8 as 817.
y=7√7x57√862(817)7
Step 3.4.4.7.6.2
Apply the power rule and multiply exponents, (am)n=amn.
y=7√7x57√862⋅817⋅7
Step 3.4.4.7.6.3
Combine 17 and 7.
y=7√7x57√862⋅877
Step 3.4.4.7.6.4
Cancel the common factor of 7.
Step 3.4.4.7.6.4.1
Cancel the common factor.
y=7√7x57√862⋅877
Step 3.4.4.7.6.4.2
Rewrite the expression.
y=7√7x57√862⋅81
y=7√7x57√862⋅81
Step 3.4.4.7.6.5
Evaluate the exponent.
y=7√7x57√862⋅8
y=7√7x57√862⋅8
y=7√7x57√862⋅8
Step 3.4.4.8
Simplify the numerator.
Step 3.4.4.8.1
Rewrite 7√86 as 7√86.
y=7√7x57√862⋅8
Step 3.4.4.8.2
Raise 8 to the power of 6.
y=7√7x57√2621442⋅8
Step 3.4.4.8.3
Rewrite 262144 as 47⋅16.
Step 3.4.4.8.3.1
Factor 16384 out of 262144.
y=7√7x57√16384(16)2⋅8
Step 3.4.4.8.3.2
Rewrite 16384 as 47.
y=7√7x57√47⋅162⋅8
y=7√7x57√47⋅162⋅8
Step 3.4.4.8.4
Pull terms out from under the radical.
y=7√7x5⋅47√162⋅8
Step 3.4.4.8.5
Combine exponents.
Step 3.4.4.8.5.1
Combine using the product rule for radicals.
y=47√7x5⋅162⋅8
Step 3.4.4.8.5.2
Multiply 16 by 7.
y=47√112x52⋅8
y=47√112x52⋅8
y=47√112x52⋅8
Step 3.4.4.9
Reduce the expression by cancelling the common factors.
Step 3.4.4.9.1
Multiply 2 by 8.
y=47√112x516
Step 3.4.4.9.2
Cancel the common factor of 4 and 16.
Step 3.4.4.9.2.1
Factor 4 out of 47√112x5.
y=4(7√112x5)16
Step 3.4.4.9.2.2
Cancel the common factors.
Step 3.4.4.9.2.2.1
Factor 4 out of 16.
y=47√112x54⋅4
Step 3.4.4.9.2.2.2
Cancel the common factor.
y=47√112x54⋅4
Step 3.4.4.9.2.2.3
Rewrite the expression.
y=7√112x54
y=7√112x54
y=7√112x54
y=7√112x54
y=7√112x54
y=7√112x54
y=7√112x54
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=7√112x54
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(45√x77) by substituting in the value of f into f-1.
f-1(45√x77)=7√112(45√x77)54
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Apply the product rule to 45√x77.
f-1(45√x77)=7√112⋅(455√x775)4
Step 5.2.3.2
Raise 4 to the power of 5.
f-1(45√x77)=7√112⋅(10245√x775)4
Step 5.2.3.3
Rewrite 5√x77 as 5√x75√7.
f-1(45√x77)=7√112⋅(1024(5√x75√7)5)4
Step 5.2.3.4
Simplify the numerator.
Step 5.2.3.4.1
Factor out x5.
f-1(45√x77)=7√112⋅(1024(5√x5x25√7)5)4
Step 5.2.3.4.2
Pull terms out from under the radical.
f-1(45√x77)=7√112⋅(1024(x5√x25√7)5)4
f-1(45√x77)=7√112⋅(1024(x5√x25√7)5)4
Step 5.2.3.5
Multiply x5√x25√7 by 5√745√74.
f-1(45√x77)=7√112⋅(1024(x5√x25√7⋅5√745√74)5)4
Step 5.2.3.6
Combine and simplify the denominator.
Step 5.2.3.6.1
Multiply x5√x25√7 by 5√745√74.
f-1(45√x77)=7√112⋅(1024(x5√x25√745√75√74)5)4
Step 5.2.3.6.2
Raise 5√7 to the power of 1.
f-1(45√x77)=7√112⋅(1024(x5√x25√745√75√74)5)4
Step 5.2.3.6.3
Use the power rule aman=am+n to combine exponents.
f-1(45√x77)=7√112⋅(1024(x5√x25√745√71+4)5)4
Step 5.2.3.6.4
Add 1 and 4.
f-1(45√x77)=7√112⋅(1024(x5√x25√745√75)5)4
Step 5.2.3.6.5
Rewrite 5√75 as 7.
Step 5.2.3.6.5.1
Use n√ax=axn to rewrite 5√7 as 715.
f-1(45√x77)=7√112⋅(1024(x5√x25√74(715)5)5)4
Step 5.2.3.6.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(45√x77)=7√112⋅(1024(x5√x25√74715⋅5)5)4
Step 5.2.3.6.5.3
Combine 15 and 5.
f-1(45√x77)=7√112⋅(1024(x5√x25√74755)5)4
Step 5.2.3.6.5.4
Cancel the common factor of 5.
Step 5.2.3.6.5.4.1
Cancel the common factor.
f-1(45√x77)=7√112⋅(1024(x5√x25√74755)5)4
Step 5.2.3.6.5.4.2
Rewrite the expression.
f-1(45√x77)=7√112⋅(1024(x5√x25√747)5)4
f-1(45√x77)=7√112⋅(1024(x5√x25√747)5)4
Step 5.2.3.6.5.5
Evaluate the exponent.
f-1(45√x77)=7√112⋅(1024(x5√x25√747)5)4
f-1(45√x77)=7√112⋅(1024(x5√x25√747)5)4
f-1(45√x77)=7√112⋅(1024(x5√x25√747)5)4
Step 5.2.3.7
Simplify the numerator.
Step 5.2.3.7.1
Rewrite 5√74 as 5√74.
f-1(45√x77)=7√112⋅(1024(x5√x25√747)5)4
Step 5.2.3.7.2
Raise 7 to the power of 4.
f-1(45√x77)=7√112⋅(1024(x5√x25√24017)5)4
Step 5.2.3.7.3
Combine using the product rule for radicals.
f-1(45√x77)=7√112⋅(1024(x5√2401x27)5)4
f-1(45√x77)=7√112⋅(1024(x5√2401x27)5)4
Step 5.2.3.8
Use the power rule (ab)n=anbn to distribute the exponent.
Step 5.2.3.8.1
Apply the product rule to x5√2401x27.
f-1(45√x77)=7√112⋅(1024((x5√2401x2)575))4
Step 5.2.3.8.2
Apply the product rule to x5√2401x2.
f-1(45√x77)=7√112⋅(1024(x55√2401x2575))4
f-1(45√x77)=7√112⋅(1024(x55√2401x2575))4
Step 5.2.3.9
Simplify the numerator.
Step 5.2.3.9.1
Rewrite 5√2401x25 as 2401x2.
Step 5.2.3.9.1.1
Use n√ax=axn to rewrite 5√2401x2 as (2401x2)15.
f-1(45√x77)=7√112⋅(1024(x5((2401x2)15)575))4
Step 5.2.3.9.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(45√x77)=7√112⋅(1024(x5(2401x2)15⋅575))4
Step 5.2.3.9.1.3
Combine 15 and 5.
f-1(45√x77)=7√112⋅(1024(x5(2401x2)5575))4
Step 5.2.3.9.1.4
Cancel the common factor of 5.
Step 5.2.3.9.1.4.1
Cancel the common factor.
f-1(45√x77)=7√112⋅(1024(x5(2401x2)5575))4
Step 5.2.3.9.1.4.2
Rewrite the expression.
f-1(45√x77)=7√112⋅(1024(x5(2401x2)75))4
f-1(45√x77)=7√112⋅(1024(x5(2401x2)75))4
Step 5.2.3.9.1.5
Simplify.
f-1(45√x77)=7√112⋅(1024(x5(2401x2)75))4
f-1(45√x77)=7√112⋅(1024(x5⋅(2401x2)75))4
Step 5.2.3.9.2
Multiply x5 by x2 by adding the exponents.
Step 5.2.3.9.2.1
Move x2.
f-1(45√x77)=7√112⋅(1024(x2x5⋅240175))4
Step 5.2.3.9.2.2
Use the power rule aman=am+n to combine exponents.
f-1(45√x77)=7√112⋅(1024(x2+5⋅240175))4
Step 5.2.3.9.2.3
Add 2 and 5.
f-1(45√x77)=7√112⋅(1024(x7⋅240175))4
f-1(45√x77)=7√112⋅(1024(x7⋅240175))4
f-1(45√x77)=7√112⋅(1024(x7⋅240175))4
Step 5.2.3.10
Raise 7 to the power of 5.
f-1(45√x77)=7√112⋅(1024(x7⋅240116807))4
Step 5.2.3.11
Cancel the common factor of 2401 and 16807.
Step 5.2.3.11.1
Factor 2401 out of x7⋅2401.
f-1(45√x77)=7√112⋅(1024(2401⋅x716807))4
Step 5.2.3.11.2
Cancel the common factors.
Step 5.2.3.11.2.1
Factor 2401 out of 16807.
f-1(45√x77)=7√112⋅(1024(2401⋅x72401⋅7))4
Step 5.2.3.11.2.2
Cancel the common factor.
f-1(45√x77)=7√112⋅(1024(2401⋅x72401⋅7))4
Step 5.2.3.11.2.3
Rewrite the expression.
f-1(45√x77)=7√112⋅(1024(x77))4
f-1(45√x77)=7√112⋅(1024(x77))4
f-1(45√x77)=7√112⋅(1024(x77))4
Step 5.2.3.12
Combine exponents.
Step 5.2.3.12.1
Multiply 112 by 1024.
f-1(45√x77)=7√114688(x77)4
Step 5.2.3.12.2
Combine 114688 and x77.
f-1(45√x77)=7√114688x774
f-1(45√x77)=7√114688x774
Step 5.2.3.13
Reduce the expression by cancelling the common factors.
Step 5.2.3.13.1
Reduce the expression 114688x77 by cancelling the common factors.
Step 5.2.3.13.1.1
Factor 7 out of 114688x7.
f-1(45√x77)=7√7(16384x7)74
Step 5.2.3.13.1.2
Factor 7 out of 7.
f-1(45√x77)=7√7(16384x7)7(1)4
Step 5.2.3.13.1.3
Cancel the common factor.
f-1(45√x77)=7√7(16384x7)7⋅14
Step 5.2.3.13.1.4
Rewrite the expression.
f-1(45√x77)=7√16384x714
f-1(45√x77)=7√16384x714
Step 5.2.3.13.2
Divide 16384x7 by 1.
f-1(45√x77)=7√16384x74
f-1(45√x77)=7√16384x74
Step 5.2.3.14
Rewrite 16384x7 as (4x)7.
f-1(45√x77)=7√(4x)74
Step 5.2.3.15
Pull terms out from under the radical, assuming real numbers.
f-1(45√x77)=4x4
f-1(45√x77)=4x4
Step 5.2.4
Cancel the common factor of 4.
Step 5.2.4.1
Cancel the common factor.
f-1(45√x77)=4x4
Step 5.2.4.2
Divide x by 1.
f-1(45√x77)=x
f-1(45√x77)=x
f-1(45√x77)=x
Step 5.3
Evaluate f(f-1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(7√112x54) by substituting in the value of f-1 into f.
f(7√112x54)=45√(7√112x54)77
Step 5.3.3
Apply the product rule to 7√112x54.
f(7√112x54)=45√7√112x57477
Step 5.3.4
Multiply the numerator by the reciprocal of the denominator.
f(7√112x54)=45√7√112x5747⋅17
Step 5.3.5
Combine.
f(7√112x54)=45√7√112x57⋅147⋅7
Step 5.3.6
Simplify the expression.
Step 5.3.6.1
Multiply 7√112x57 by 1.
f(7√112x54)=45√7√112x5747⋅7
Step 5.3.6.2
Raise 4 to the power of 7.
f(7√112x54)=45√7√112x5716384⋅7
f(7√112x54)=45√7√112x5716384⋅7
Step 5.3.7
Rewrite 7√112x57 as 112x5.
Step 5.3.7.1
Use n√ax=axn to rewrite 7√112x5 as (112x5)17.
f(7√112x54)=45√((112x5)17)716384⋅7
Step 5.3.7.2
Apply the power rule and multiply exponents, (am)n=amn.
f(7√112x54)=45√(112x5)17⋅716384⋅7
Step 5.3.7.3
Combine 17 and 7.
f(7√112x54)=45√(112x5)7716384⋅7
Step 5.3.7.4
Cancel the common factor of 7.
Step 5.3.7.4.1
Cancel the common factor.
f(7√112x54)=45√(112x5)7716384⋅7
Step 5.3.7.4.2
Rewrite the expression.
f(7√112x54)=45√112x516384⋅7
f(7√112x54)=45√112x516384⋅7
Step 5.3.7.5
Simplify.
f(7√112x54)=45√112x516384⋅7
f(7√112x54)=45√112x516384⋅7
Step 5.3.8
Multiply 16384 by 7.
f(7√112x54)=45√112x5114688
Step 5.3.9
Cancel the common factor of 112 and 114688.
Step 5.3.9.1
Factor 112 out of 112x5.
f(7√112x54)=45√112(x5)114688
Step 5.3.9.2
Cancel the common factors.
Step 5.3.9.2.1
Factor 112 out of 114688.
f(7√112x54)=45√112x5112⋅1024
Step 5.3.9.2.2
Cancel the common factor.
f(7√112x54)=45√112x5112⋅1024
Step 5.3.9.2.3
Rewrite the expression.
f(7√112x54)=45√x51024
f(7√112x54)=45√x51024
f(7√112x54)=45√x51024
Step 5.3.10
Rewrite 1024 as 45.
f(7√112x54)=45√x545
Step 5.3.11
Rewrite x545 as (x4)5.
f(7√112x54)=45√(x4)5
Step 5.3.12
Pull terms out from under the radical, assuming real numbers.
f(7√112x54)=4(x4)
Step 5.3.13
Cancel the common factor of 4.
Step 5.3.13.1
Cancel the common factor.
f(7√112x54)=4(x4)
Step 5.3.13.2
Rewrite the expression.
f(7√112x54)=x
f(7√112x54)=x
f(7√112x54)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=7√112x54 is the inverse of f(x)=45√x77.
f-1(x)=7√112x54
f-1(x)=7√112x54