Algebra Examples

Find the Inverse f(x)=4 fifth root of (x^7)/7
f(x)=45x77f(x)=45x77
Step 1
Write f(x)=45x77 as an equation.
y=45x77
Step 2
Interchange the variables.
x=45y77
Step 3
Solve for y.
Tap for more steps...
Step 3.1
Rewrite the equation as 45y77=x.
45y77=x
Step 3.2
To remove the radical on the left side of the equation, raise both sides of the equation to the power of 5.
(45y77)5=x5
Step 3.3
Simplify each side of the equation.
Tap for more steps...
Step 3.3.1
Use nax=axn to rewrite 5y77 as (y77)15.
(4(y77)15)5=x5
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Simplify (4(y77)15)5.
Tap for more steps...
Step 3.3.2.1.1
Apply basic rules of exponents.
Tap for more steps...
Step 3.3.2.1.1.1
Apply the product rule to y77.
(4(y7)15715)5=x5
Step 3.3.2.1.1.2
Multiply the exponents in (y7)15.
Tap for more steps...
Step 3.3.2.1.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
(4y7(15)715)5=x5
Step 3.3.2.1.1.2.2
Combine 7 and 15.
(4y75715)5=x5
(4y75715)5=x5
(4y75715)5=x5
Step 3.3.2.1.2
Combine 4 and y75715.
(4y75715)5=x5
Step 3.3.2.1.3
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.3.2.1.3.1
Apply the product rule to 4y75715.
(4y75)5(715)5=x5
Step 3.3.2.1.3.2
Apply the product rule to 4y75.
45(y75)5(715)5=x5
45(y75)5(715)5=x5
Step 3.3.2.1.4
Simplify the numerator.
Tap for more steps...
Step 3.3.2.1.4.1
Raise 4 to the power of 5.
1024(y75)5(715)5=x5
Step 3.3.2.1.4.2
Multiply the exponents in (y75)5.
Tap for more steps...
Step 3.3.2.1.4.2.1
Apply the power rule and multiply exponents, (am)n=amn.
1024y755(715)5=x5
Step 3.3.2.1.4.2.2
Cancel the common factor of 5.
Tap for more steps...
Step 3.3.2.1.4.2.2.1
Cancel the common factor.
1024y755(715)5=x5
Step 3.3.2.1.4.2.2.2
Rewrite the expression.
1024y7(715)5=x5
1024y7(715)5=x5
1024y7(715)5=x5
1024y7(715)5=x5
Step 3.3.2.1.5
Simplify the denominator.
Tap for more steps...
Step 3.3.2.1.5.1
Multiply the exponents in (715)5.
Tap for more steps...
Step 3.3.2.1.5.1.1
Apply the power rule and multiply exponents, (am)n=amn.
1024y77155=x5
Step 3.3.2.1.5.1.2
Cancel the common factor of 5.
Tap for more steps...
Step 3.3.2.1.5.1.2.1
Cancel the common factor.
1024y77155=x5
Step 3.3.2.1.5.1.2.2
Rewrite the expression.
1024y771=x5
1024y771=x5
1024y771=x5
Step 3.3.2.1.5.2
Evaluate the exponent.
1024y77=x5
1024y77=x5
1024y77=x5
1024y77=x5
1024y77=x5
Step 3.4
Solve for y.
Tap for more steps...
Step 3.4.1
Multiply both sides of the equation by 71024.
710241024y77=71024x5
Step 3.4.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.4.2.1
Simplify the left side.
Tap for more steps...
Step 3.4.2.1.1
Simplify 710241024y77.
Tap for more steps...
Step 3.4.2.1.1.1
Combine.
7(1024y7)10247=71024x5
Step 3.4.2.1.1.2
Cancel the common factor of 7.
Tap for more steps...
Step 3.4.2.1.1.2.1
Cancel the common factor.
7(1024y7)10247=71024x5
Step 3.4.2.1.1.2.2
Rewrite the expression.
1024y71024=71024x5
1024y71024=71024x5
Step 3.4.2.1.1.3
Cancel the common factor of 1024.
Tap for more steps...
Step 3.4.2.1.1.3.1
Cancel the common factor.
1024y71024=71024x5
Step 3.4.2.1.1.3.2
Divide y7 by 1.
y7=71024x5
y7=71024x5
y7=71024x5
y7=71024x5
Step 3.4.2.2
Simplify the right side.
Tap for more steps...
Step 3.4.2.2.1
Combine 71024 and x5.
y7=7x51024
y7=7x51024
y7=7x51024
Step 3.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
y=77x51024
Step 3.4.4
Simplify 77x51024.
Tap for more steps...
Step 3.4.4.1
Rewrite 7x51024 as (12)77x58.
Tap for more steps...
Step 3.4.4.1.1
Factor the perfect power 17 out of 7x5.
y=717(7x5)1024
Step 3.4.4.1.2
Factor the perfect power 27 out of 1024.
y=717(7x5)278
Step 3.4.4.1.3
Rearrange the fraction 17(7x5)278.
y=7(12)77x58
y=7(12)77x58
Step 3.4.4.2
Pull terms out from under the radical.
y=1277x58
Step 3.4.4.3
Rewrite 77x58 as 77x578.
y=1277x578
Step 3.4.4.4
Combine.
y=177x5278
Step 3.4.4.5
Multiply 77x5 by 1.
y=77x5278
Step 3.4.4.6
Multiply 77x5278 by 786786.
y=77x5278786786
Step 3.4.4.7
Combine and simplify the denominator.
Tap for more steps...
Step 3.4.4.7.1
Multiply 77x5278 by 786786.
y=77x5786278786
Step 3.4.4.7.2
Move 78.
y=77x57862(78786)
Step 3.4.4.7.3
Raise 78 to the power of 1.
y=77x57862(781786)
Step 3.4.4.7.4
Use the power rule aman=am+n to combine exponents.
y=77x57862781+6
Step 3.4.4.7.5
Add 1 and 6.
y=77x57862787
Step 3.4.4.7.6
Rewrite 787 as 8.
Tap for more steps...
Step 3.4.4.7.6.1
Use nax=axn to rewrite 78 as 817.
y=77x57862(817)7
Step 3.4.4.7.6.2
Apply the power rule and multiply exponents, (am)n=amn.
y=77x578628177
Step 3.4.4.7.6.3
Combine 17 and 7.
y=77x57862877
Step 3.4.4.7.6.4
Cancel the common factor of 7.
Tap for more steps...
Step 3.4.4.7.6.4.1
Cancel the common factor.
y=77x57862877
Step 3.4.4.7.6.4.2
Rewrite the expression.
y=77x5786281
y=77x5786281
Step 3.4.4.7.6.5
Evaluate the exponent.
y=77x578628
y=77x578628
y=77x578628
Step 3.4.4.8
Simplify the numerator.
Tap for more steps...
Step 3.4.4.8.1
Rewrite 786 as 786.
y=77x578628
Step 3.4.4.8.2
Raise 8 to the power of 6.
y=77x5726214428
Step 3.4.4.8.3
Rewrite 262144 as 4716.
Tap for more steps...
Step 3.4.4.8.3.1
Factor 16384 out of 262144.
y=77x5716384(16)28
Step 3.4.4.8.3.2
Rewrite 16384 as 47.
y=77x57471628
y=77x57471628
Step 3.4.4.8.4
Pull terms out from under the radical.
y=77x5471628
Step 3.4.4.8.5
Combine exponents.
Tap for more steps...
Step 3.4.4.8.5.1
Combine using the product rule for radicals.
y=477x51628
Step 3.4.4.8.5.2
Multiply 16 by 7.
y=47112x528
y=47112x528
y=47112x528
Step 3.4.4.9
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 3.4.4.9.1
Multiply 2 by 8.
y=47112x516
Step 3.4.4.9.2
Cancel the common factor of 4 and 16.
Tap for more steps...
Step 3.4.4.9.2.1
Factor 4 out of 47112x5.
y=4(7112x5)16
Step 3.4.4.9.2.2
Cancel the common factors.
Tap for more steps...
Step 3.4.4.9.2.2.1
Factor 4 out of 16.
y=47112x544
Step 3.4.4.9.2.2.2
Cancel the common factor.
y=47112x544
Step 3.4.4.9.2.2.3
Rewrite the expression.
y=7112x54
y=7112x54
y=7112x54
y=7112x54
y=7112x54
y=7112x54
y=7112x54
Step 4
Replace y with f-1(x) to show the final answer.
f-1(x)=7112x54
Step 5
Verify if f-1(x)=7112x54 is the inverse of f(x)=45x77.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=x and f(f-1(x))=x.
Step 5.2
Evaluate f-1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))
Step 5.2.2
Evaluate f-1(45x77) by substituting in the value of f into f-1.
f-1(45x77)=7112(45x77)54
Step 5.2.3
Simplify the numerator.
Tap for more steps...
Step 5.2.3.1
Apply the product rule to 45x77.
f-1(45x77)=7112(455x775)4
Step 5.2.3.2
Raise 4 to the power of 5.
f-1(45x77)=7112(10245x775)4
Step 5.2.3.3
Rewrite 5x77 as 5x757.
f-1(45x77)=7112(1024(5x757)5)4
Step 5.2.3.4
Simplify the numerator.
Tap for more steps...
Step 5.2.3.4.1
Factor out x5.
f-1(45x77)=7112(1024(5x5x257)5)4
Step 5.2.3.4.2
Pull terms out from under the radical.
f-1(45x77)=7112(1024(x5x257)5)4
f-1(45x77)=7112(1024(x5x257)5)4
Step 5.2.3.5
Multiply x5x257 by 574574.
f-1(45x77)=7112(1024(x5x257574574)5)4
Step 5.2.3.6
Combine and simplify the denominator.
Tap for more steps...
Step 5.2.3.6.1
Multiply x5x257 by 574574.
f-1(45x77)=7112(1024(x5x257457574)5)4
Step 5.2.3.6.2
Raise 57 to the power of 1.
f-1(45x77)=7112(1024(x5x257457574)5)4
Step 5.2.3.6.3
Use the power rule aman=am+n to combine exponents.
f-1(45x77)=7112(1024(x5x2574571+4)5)4
Step 5.2.3.6.4
Add 1 and 4.
f-1(45x77)=7112(1024(x5x2574575)5)4
Step 5.2.3.6.5
Rewrite 575 as 7.
Tap for more steps...
Step 5.2.3.6.5.1
Use nax=axn to rewrite 57 as 715.
f-1(45x77)=7112(1024(x5x2574(715)5)5)4
Step 5.2.3.6.5.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(45x77)=7112(1024(x5x25747155)5)4
Step 5.2.3.6.5.3
Combine 15 and 5.
f-1(45x77)=7112(1024(x5x2574755)5)4
Step 5.2.3.6.5.4
Cancel the common factor of 5.
Tap for more steps...
Step 5.2.3.6.5.4.1
Cancel the common factor.
f-1(45x77)=7112(1024(x5x2574755)5)4
Step 5.2.3.6.5.4.2
Rewrite the expression.
f-1(45x77)=7112(1024(x5x25747)5)4
f-1(45x77)=7112(1024(x5x25747)5)4
Step 5.2.3.6.5.5
Evaluate the exponent.
f-1(45x77)=7112(1024(x5x25747)5)4
f-1(45x77)=7112(1024(x5x25747)5)4
f-1(45x77)=7112(1024(x5x25747)5)4
Step 5.2.3.7
Simplify the numerator.
Tap for more steps...
Step 5.2.3.7.1
Rewrite 574 as 574.
f-1(45x77)=7112(1024(x5x25747)5)4
Step 5.2.3.7.2
Raise 7 to the power of 4.
f-1(45x77)=7112(1024(x5x2524017)5)4
Step 5.2.3.7.3
Combine using the product rule for radicals.
f-1(45x77)=7112(1024(x52401x27)5)4
f-1(45x77)=7112(1024(x52401x27)5)4
Step 5.2.3.8
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.2.3.8.1
Apply the product rule to x52401x27.
f-1(45x77)=7112(1024((x52401x2)575))4
Step 5.2.3.8.2
Apply the product rule to x52401x2.
f-1(45x77)=7112(1024(x552401x2575))4
f-1(45x77)=7112(1024(x552401x2575))4
Step 5.2.3.9
Simplify the numerator.
Tap for more steps...
Step 5.2.3.9.1
Rewrite 52401x25 as 2401x2.
Tap for more steps...
Step 5.2.3.9.1.1
Use nax=axn to rewrite 52401x2 as (2401x2)15.
f-1(45x77)=7112(1024(x5((2401x2)15)575))4
Step 5.2.3.9.1.2
Apply the power rule and multiply exponents, (am)n=amn.
f-1(45x77)=7112(1024(x5(2401x2)15575))4
Step 5.2.3.9.1.3
Combine 15 and 5.
f-1(45x77)=7112(1024(x5(2401x2)5575))4
Step 5.2.3.9.1.4
Cancel the common factor of 5.
Tap for more steps...
Step 5.2.3.9.1.4.1
Cancel the common factor.
f-1(45x77)=7112(1024(x5(2401x2)5575))4
Step 5.2.3.9.1.4.2
Rewrite the expression.
f-1(45x77)=7112(1024(x5(2401x2)75))4
f-1(45x77)=7112(1024(x5(2401x2)75))4
Step 5.2.3.9.1.5
Simplify.
f-1(45x77)=7112(1024(x5(2401x2)75))4
f-1(45x77)=7112(1024(x5(2401x2)75))4
Step 5.2.3.9.2
Multiply x5 by x2 by adding the exponents.
Tap for more steps...
Step 5.2.3.9.2.1
Move x2.
f-1(45x77)=7112(1024(x2x5240175))4
Step 5.2.3.9.2.2
Use the power rule aman=am+n to combine exponents.
f-1(45x77)=7112(1024(x2+5240175))4
Step 5.2.3.9.2.3
Add 2 and 5.
f-1(45x77)=7112(1024(x7240175))4
f-1(45x77)=7112(1024(x7240175))4
f-1(45x77)=7112(1024(x7240175))4
Step 5.2.3.10
Raise 7 to the power of 5.
f-1(45x77)=7112(1024(x7240116807))4
Step 5.2.3.11
Cancel the common factor of 2401 and 16807.
Tap for more steps...
Step 5.2.3.11.1
Factor 2401 out of x72401.
f-1(45x77)=7112(1024(2401x716807))4
Step 5.2.3.11.2
Cancel the common factors.
Tap for more steps...
Step 5.2.3.11.2.1
Factor 2401 out of 16807.
f-1(45x77)=7112(1024(2401x724017))4
Step 5.2.3.11.2.2
Cancel the common factor.
f-1(45x77)=7112(1024(2401x724017))4
Step 5.2.3.11.2.3
Rewrite the expression.
f-1(45x77)=7112(1024(x77))4
f-1(45x77)=7112(1024(x77))4
f-1(45x77)=7112(1024(x77))4
Step 5.2.3.12
Combine exponents.
Tap for more steps...
Step 5.2.3.12.1
Multiply 112 by 1024.
f-1(45x77)=7114688(x77)4
Step 5.2.3.12.2
Combine 114688 and x77.
f-1(45x77)=7114688x774
f-1(45x77)=7114688x774
Step 5.2.3.13
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 5.2.3.13.1
Reduce the expression 114688x77 by cancelling the common factors.
Tap for more steps...
Step 5.2.3.13.1.1
Factor 7 out of 114688x7.
f-1(45x77)=77(16384x7)74
Step 5.2.3.13.1.2
Factor 7 out of 7.
f-1(45x77)=77(16384x7)7(1)4
Step 5.2.3.13.1.3
Cancel the common factor.
f-1(45x77)=77(16384x7)714
Step 5.2.3.13.1.4
Rewrite the expression.
f-1(45x77)=716384x714
f-1(45x77)=716384x714
Step 5.2.3.13.2
Divide 16384x7 by 1.
f-1(45x77)=716384x74
f-1(45x77)=716384x74
Step 5.2.3.14
Rewrite 16384x7 as (4x)7.
f-1(45x77)=7(4x)74
Step 5.2.3.15
Pull terms out from under the radical, assuming real numbers.
f-1(45x77)=4x4
f-1(45x77)=4x4
Step 5.2.4
Cancel the common factor of 4.
Tap for more steps...
Step 5.2.4.1
Cancel the common factor.
f-1(45x77)=4x4
Step 5.2.4.2
Divide x by 1.
f-1(45x77)=x
f-1(45x77)=x
f-1(45x77)=x
Step 5.3
Evaluate f(f-1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))
Step 5.3.2
Evaluate f(7112x54) by substituting in the value of f-1 into f.
f(7112x54)=45(7112x54)77
Step 5.3.3
Apply the product rule to 7112x54.
f(7112x54)=457112x57477
Step 5.3.4
Multiply the numerator by the reciprocal of the denominator.
f(7112x54)=457112x574717
Step 5.3.5
Combine.
f(7112x54)=457112x571477
Step 5.3.6
Simplify the expression.
Tap for more steps...
Step 5.3.6.1
Multiply 7112x57 by 1.
f(7112x54)=457112x57477
Step 5.3.6.2
Raise 4 to the power of 7.
f(7112x54)=457112x57163847
f(7112x54)=457112x57163847
Step 5.3.7
Rewrite 7112x57 as 112x5.
Tap for more steps...
Step 5.3.7.1
Use nax=axn to rewrite 7112x5 as (112x5)17.
f(7112x54)=45((112x5)17)7163847
Step 5.3.7.2
Apply the power rule and multiply exponents, (am)n=amn.
f(7112x54)=45(112x5)177163847
Step 5.3.7.3
Combine 17 and 7.
f(7112x54)=45(112x5)77163847
Step 5.3.7.4
Cancel the common factor of 7.
Tap for more steps...
Step 5.3.7.4.1
Cancel the common factor.
f(7112x54)=45(112x5)77163847
Step 5.3.7.4.2
Rewrite the expression.
f(7112x54)=45112x5163847
f(7112x54)=45112x5163847
Step 5.3.7.5
Simplify.
f(7112x54)=45112x5163847
f(7112x54)=45112x5163847
Step 5.3.8
Multiply 16384 by 7.
f(7112x54)=45112x5114688
Step 5.3.9
Cancel the common factor of 112 and 114688.
Tap for more steps...
Step 5.3.9.1
Factor 112 out of 112x5.
f(7112x54)=45112(x5)114688
Step 5.3.9.2
Cancel the common factors.
Tap for more steps...
Step 5.3.9.2.1
Factor 112 out of 114688.
f(7112x54)=45112x51121024
Step 5.3.9.2.2
Cancel the common factor.
f(7112x54)=45112x51121024
Step 5.3.9.2.3
Rewrite the expression.
f(7112x54)=45x51024
f(7112x54)=45x51024
f(7112x54)=45x51024
Step 5.3.10
Rewrite 1024 as 45.
f(7112x54)=45x545
Step 5.3.11
Rewrite x545 as (x4)5.
f(7112x54)=45(x4)5
Step 5.3.12
Pull terms out from under the radical, assuming real numbers.
f(7112x54)=4(x4)
Step 5.3.13
Cancel the common factor of 4.
Tap for more steps...
Step 5.3.13.1
Cancel the common factor.
f(7112x54)=4(x4)
Step 5.3.13.2
Rewrite the expression.
f(7112x54)=x
f(7112x54)=x
f(7112x54)=x
Step 5.4
Since f-1(f(x))=x and f(f-1(x))=x, then f-1(x)=7112x54 is the inverse of f(x)=45x77.
f-1(x)=7112x54
f-1(x)=7112x54
 [x2  12  π  xdx ]