Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply by .
Step 1.3.1.2
Move to the left of .
Step 1.3.1.3
Multiply by .
Step 1.3.2
Subtract from .
Step 1.4
Apply the distributive property.
Step 1.5
Simplify.
Step 1.5.1
Combine and .
Step 1.5.2
Cancel the common factor of .
Step 1.5.2.1
Factor out of .
Step 1.5.2.2
Factor out of .
Step 1.5.2.3
Cancel the common factor.
Step 1.5.2.4
Rewrite the expression.
Step 1.5.3
Combine and .
Step 1.5.4
Combine and .
Step 1.5.5
Combine and .
Step 1.6
Move the negative in front of the fraction.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Cancel the common factor of .
Step 2.2.1.1.2.1.1
Factor out of .
Step 2.2.1.1.2.1.2
Factor out of .
Step 2.2.1.1.2.1.3
Cancel the common factor.
Step 2.2.1.1.2.1.4
Rewrite the expression.
Step 2.2.1.1.2.2
Cancel the common factor of .
Step 2.2.1.1.2.2.1
Move the leading negative in into the numerator.
Step 2.2.1.1.2.2.2
Factor out of .
Step 2.2.1.1.2.2.3
Cancel the common factor.
Step 2.2.1.1.2.2.4
Rewrite the expression.
Step 2.2.1.1.2.3
Multiply by .
Step 2.2.1.1.2.4
Cancel the common factor of .
Step 2.2.1.1.2.4.1
Factor out of .
Step 2.2.1.1.2.4.2
Factor out of .
Step 2.2.1.1.2.4.3
Cancel the common factor.
Step 2.2.1.1.2.4.4
Rewrite the expression.
Step 2.2.1.1.3
Simplify each term.
Step 2.2.1.1.3.1
Rewrite as .
Step 2.2.1.1.3.2
Rewrite as .
Step 2.2.1.2
Add and .
Step 3
Step 3.1
Multiply each term in by to eliminate the fractions.
Step 3.1.1
Multiply each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Simplify each term.
Step 3.1.2.1.1
Cancel the common factor of .
Step 3.1.2.1.1.1
Move the leading negative in into the numerator.
Step 3.1.2.1.1.2
Cancel the common factor.
Step 3.1.2.1.1.3
Rewrite the expression.
Step 3.1.2.1.2
Multiply by .
Step 3.1.2.1.3
Cancel the common factor of .
Step 3.1.2.1.3.1
Move the leading negative in into the numerator.
Step 3.1.2.1.3.2
Cancel the common factor.
Step 3.1.2.1.3.3
Rewrite the expression.
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Multiply by .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
Subtract from .
Step 3.4
Factor the left side of the equation.
Step 3.4.1
Factor out of .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Rewrite as .
Step 3.4.1.4
Factor out of .
Step 3.4.1.5
Factor out of .
Step 3.4.2
Factor.
Step 3.4.2.1
Factor using the AC method.
Step 3.4.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.4.2.1.2
Write the factored form using these integers.
Step 3.4.2.2
Remove unnecessary parentheses.
Step 3.5
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.6
Set equal to and solve for .
Step 3.6.1
Set equal to .
Step 3.6.2
Add to both sides of the equation.
Step 3.7
Set equal to and solve for .
Step 3.7.1
Set equal to .
Step 3.7.2
Add to both sides of the equation.
Step 3.8
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Combine fractions.
Step 4.2.1.1.1
Combine the numerators over the common denominator.
Step 4.2.1.1.2
Simplify the expression.
Step 4.2.1.1.2.1
Raise to the power of .
Step 4.2.1.1.2.2
Add and .
Step 4.2.1.1.2.3
Multiply by .
Step 4.2.1.2
Simplify each term.
Step 4.2.1.2.1
Cancel the common factor of and .
Step 4.2.1.2.1.1
Factor out of .
Step 4.2.1.2.1.2
Cancel the common factors.
Step 4.2.1.2.1.2.1
Factor out of .
Step 4.2.1.2.1.2.2
Cancel the common factor.
Step 4.2.1.2.1.2.3
Rewrite the expression.
Step 4.2.1.2.2
Move the negative in front of the fraction.
Step 4.2.1.3
Combine fractions.
Step 4.2.1.3.1
Combine the numerators over the common denominator.
Step 4.2.1.3.2
Simplify the expression.
Step 4.2.1.3.2.1
Subtract from .
Step 4.2.1.3.2.2
Divide by .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Combine fractions.
Step 5.2.1.1.1
Combine the numerators over the common denominator.
Step 5.2.1.1.2
Simplify the expression.
Step 5.2.1.1.2.1
Raise to the power of .
Step 5.2.1.1.2.2
Add and .
Step 5.2.1.1.2.3
Multiply by .
Step 5.2.1.2
Simplify each term.
Step 5.2.1.2.1
Cancel the common factor of and .
Step 5.2.1.2.1.1
Factor out of .
Step 5.2.1.2.1.2
Cancel the common factors.
Step 5.2.1.2.1.2.1
Factor out of .
Step 5.2.1.2.1.2.2
Cancel the common factor.
Step 5.2.1.2.1.2.3
Rewrite the expression.
Step 5.2.1.2.2
Move the negative in front of the fraction.
Step 5.2.1.3
Combine fractions.
Step 5.2.1.3.1
Combine the numerators over the common denominator.
Step 5.2.1.3.2
Simplify the expression.
Step 5.2.1.3.2.1
Subtract from .
Step 5.2.1.3.2.2
Divide by .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8