Enter a problem...
Algebra Examples
√y6=-y3√y6=−y3
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
√y62=(-y3)2√y62=(−y3)2
Step 2
Step 2.1
Use n√ax=axnn√ax=axn to rewrite √y6√y6 as y62y62.
(y62)2=(-y3)2(y62)2=(−y3)2
Step 2.2
Divide 66 by 22.
(y3)2=(-y3)2(y3)2=(−y3)2
Step 2.3
Simplify the left side.
Step 2.3.1
Multiply the exponents in (y3)2(y3)2.
Step 2.3.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
y3⋅2=(-y3)2y3⋅2=(−y3)2
Step 2.3.1.2
Multiply 33 by 22.
y6=(-y3)2y6=(−y3)2
y6=(-y3)2y6=(−y3)2
y6=(-y3)2y6=(−y3)2
Step 2.4
Simplify the right side.
Step 2.4.1
Simplify (-y3)2(−y3)2.
Step 2.4.1.1
Apply the product rule to -y3−y3.
y6=(-1)2(y3)2y6=(−1)2(y3)2
Step 2.4.1.2
Raise -1−1 to the power of 22.
y6=1(y3)2y6=1(y3)2
Step 2.4.1.3
Multiply (y3)2(y3)2 by 11.
y6=(y3)2y6=(y3)2
Step 2.4.1.4
Multiply the exponents in (y3)2(y3)2.
Step 2.4.1.4.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
y6=y3⋅2y6=y3⋅2
Step 2.4.1.4.2
Multiply 33 by 22.
y6=y6y6=y6
y6=y6y6=y6
y6=y6y6=y6
y6=y6y6=y6
y6=y6y6=y6
Step 3
Step 3.1
Since the exponents are equal, the bases of the exponents on both sides of the equation must be equal.
|y|=|y||y|=|y|
Step 3.2
Solve for yy.
Step 3.2.1
Rewrite the absolute value equation as four equations without absolute value bars.
y=yy=y
y=-yy=−y
-y=y−y=y
-y=-y−y=−y
Step 3.2.2
After simplifying, there are only two unique equations to be solved.
y=yy=y
y=-yy=−y
Step 3.2.3
Solve y=yy=y for yy.
Step 3.2.3.1
Move all terms containing yy to the left side of the equation.
Step 3.2.3.1.1
Subtract yy from both sides of the equation.
y-y=0y−y=0
Step 3.2.3.1.2
Subtract yy from yy.
0=00=0
0=00=0
Step 3.2.3.2
Since 0=00=0, the equation will always be true.
Always true
Always true
Step 3.2.4
Solve y=-yy=−y for yy.
Step 3.2.4.1
Move all terms containing yy to the left side of the equation.
Step 3.2.4.1.1
Add yy to both sides of the equation.
y+y=0y+y=0
Step 3.2.4.1.2
Add yy and yy.
2y=02y=0
2y=02y=0
Step 3.2.4.2
Divide each term in 2y=02y=0 by 22 and simplify.
Step 3.2.4.2.1
Divide each term in 2y=02y=0 by 22.
2y2=022y2=02
Step 3.2.4.2.2
Simplify the left side.
Step 3.2.4.2.2.1
Cancel the common factor of 22.
Step 3.2.4.2.2.1.1
Cancel the common factor.
2y2=02
Step 3.2.4.2.2.1.2
Divide y by 1.
y=02
y=02
y=02
Step 3.2.4.2.3
Simplify the right side.
Step 3.2.4.2.3.1
Divide 0 by 2.
y=0
y=0
y=0
y=0
Step 3.2.5
List all of the solutions.
y=0
y=0
y=0
Step 4
Verify each of the solutions by substituting them into √y6=-y3 and solving.
y=0