Algebra Examples

Solve Using the Quadratic Formula 2(n-2)(n+1)-(n+3)=0
2(n-2)(n+1)-(n+3)=02(n2)(n+1)(n+3)=0
Step 1
Simplify the left side.
Tap for more steps...
Step 1.1
Simplify 2(n-2)(n+1)-(n+3)2(n2)(n+1)(n+3).
Tap for more steps...
Step 1.1.1
Simplify each term.
Tap for more steps...
Step 1.1.1.1
Apply the distributive property.
(2n+2-2)(n+1)-(n+3)=0(2n+22)(n+1)(n+3)=0
Step 1.1.1.2
Multiply 22 by -22.
(2n-4)(n+1)-(n+3)=0(2n4)(n+1)(n+3)=0
Step 1.1.1.3
Expand (2n-4)(n+1)(2n4)(n+1) using the FOIL Method.
Tap for more steps...
Step 1.1.1.3.1
Apply the distributive property.
2n(n+1)-4(n+1)-(n+3)=02n(n+1)4(n+1)(n+3)=0
Step 1.1.1.3.2
Apply the distributive property.
2nn+2n1-4(n+1)-(n+3)=02nn+2n14(n+1)(n+3)=0
Step 1.1.1.3.3
Apply the distributive property.
2nn+2n1-4n-41-(n+3)=02nn+2n14n41(n+3)=0
2nn+2n1-4n-41-(n+3)=02nn+2n14n41(n+3)=0
Step 1.1.1.4
Simplify and combine like terms.
Tap for more steps...
Step 1.1.1.4.1
Simplify each term.
Tap for more steps...
Step 1.1.1.4.1.1
Multiply nn by nn by adding the exponents.
Tap for more steps...
Step 1.1.1.4.1.1.1
Move nn.
2(nn)+2n1-4n-41-(n+3)=02(nn)+2n14n41(n+3)=0
Step 1.1.1.4.1.1.2
Multiply nn by nn.
2n2+2n1-4n-41-(n+3)=02n2+2n14n41(n+3)=0
2n2+2n1-4n-41-(n+3)=02n2+2n14n41(n+3)=0
Step 1.1.1.4.1.2
Multiply 22 by 11.
2n2+2n-4n-41-(n+3)=02n2+2n4n41(n+3)=0
Step 1.1.1.4.1.3
Multiply -44 by 11.
2n2+2n-4n-4-(n+3)=02n2+2n4n4(n+3)=0
2n2+2n-4n-4-(n+3)=02n2+2n4n4(n+3)=0
Step 1.1.1.4.2
Subtract 4n4n from 2n2n.
2n2-2n-4-(n+3)=02n22n4(n+3)=0
2n2-2n-4-(n+3)=02n22n4(n+3)=0
Step 1.1.1.5
Apply the distributive property.
2n2-2n-4-n-13=02n22n4n13=0
Step 1.1.1.6
Multiply -11 by 33.
2n2-2n-4-n-3=02n22n4n3=0
2n2-2n-4-n-3=02n22n4n3=0
Step 1.1.2
Simplify by adding terms.
Tap for more steps...
Step 1.1.2.1
Subtract nn from -2n2n.
2n2-3n-4-3=02n23n43=0
Step 1.1.2.2
Subtract 33 from -44.
2n2-3n-7=02n23n7=0
2n2-3n-7=02n23n7=0
2n2-3n-7=02n23n7=0
2n2-3n-7=02n23n7=0
Step 2
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 3
Substitute the values a=2a=2, b=-3b=3, and c=-7c=7 into the quadratic formula and solve for nn.
3±(-3)2-4(2-7)223±(3)24(27)22
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Raise -33 to the power of 22.
n=3±9-42-722n=3±942722
Step 4.1.2
Multiply -42-7427.
Tap for more steps...
Step 4.1.2.1
Multiply -44 by 22.
n=3±9-8-722n=3±98722
Step 4.1.2.2
Multiply -88 by -7.
n=3±9+5622
n=3±9+5622
Step 4.1.3
Add 9 and 56.
n=3±6522
n=3±6522
Step 4.2
Multiply 2 by 2.
n=3±654
n=3±654
Step 5
The result can be shown in multiple forms.
Exact Form:
n=3±654
Decimal Form:
n=2.76556443,-1.26556443
 [x2  12  π  xdx ]