Enter a problem...
Algebra Examples
2(n-2)(n+1)-(n+3)=02(n−2)(n+1)−(n+3)=0
Step 1
Step 1.1
Simplify 2(n-2)(n+1)-(n+3)2(n−2)(n+1)−(n+3).
Step 1.1.1
Simplify each term.
Step 1.1.1.1
Apply the distributive property.
(2n+2⋅-2)(n+1)-(n+3)=0(2n+2⋅−2)(n+1)−(n+3)=0
Step 1.1.1.2
Multiply 22 by -2−2.
(2n-4)(n+1)-(n+3)=0(2n−4)(n+1)−(n+3)=0
Step 1.1.1.3
Expand (2n-4)(n+1)(2n−4)(n+1) using the FOIL Method.
Step 1.1.1.3.1
Apply the distributive property.
2n(n+1)-4(n+1)-(n+3)=02n(n+1)−4(n+1)−(n+3)=0
Step 1.1.1.3.2
Apply the distributive property.
2n⋅n+2n⋅1-4(n+1)-(n+3)=02n⋅n+2n⋅1−4(n+1)−(n+3)=0
Step 1.1.1.3.3
Apply the distributive property.
2n⋅n+2n⋅1-4n-4⋅1-(n+3)=02n⋅n+2n⋅1−4n−4⋅1−(n+3)=0
2n⋅n+2n⋅1-4n-4⋅1-(n+3)=02n⋅n+2n⋅1−4n−4⋅1−(n+3)=0
Step 1.1.1.4
Simplify and combine like terms.
Step 1.1.1.4.1
Simplify each term.
Step 1.1.1.4.1.1
Multiply nn by nn by adding the exponents.
Step 1.1.1.4.1.1.1
Move nn.
2(n⋅n)+2n⋅1-4n-4⋅1-(n+3)=02(n⋅n)+2n⋅1−4n−4⋅1−(n+3)=0
Step 1.1.1.4.1.1.2
Multiply nn by nn.
2n2+2n⋅1-4n-4⋅1-(n+3)=02n2+2n⋅1−4n−4⋅1−(n+3)=0
2n2+2n⋅1-4n-4⋅1-(n+3)=02n2+2n⋅1−4n−4⋅1−(n+3)=0
Step 1.1.1.4.1.2
Multiply 22 by 11.
2n2+2n-4n-4⋅1-(n+3)=02n2+2n−4n−4⋅1−(n+3)=0
Step 1.1.1.4.1.3
Multiply -4−4 by 11.
2n2+2n-4n-4-(n+3)=02n2+2n−4n−4−(n+3)=0
2n2+2n-4n-4-(n+3)=02n2+2n−4n−4−(n+3)=0
Step 1.1.1.4.2
Subtract 4n4n from 2n2n.
2n2-2n-4-(n+3)=02n2−2n−4−(n+3)=0
2n2-2n-4-(n+3)=02n2−2n−4−(n+3)=0
Step 1.1.1.5
Apply the distributive property.
2n2-2n-4-n-1⋅3=02n2−2n−4−n−1⋅3=0
Step 1.1.1.6
Multiply -1−1 by 33.
2n2-2n-4-n-3=02n2−2n−4−n−3=0
2n2-2n-4-n-3=02n2−2n−4−n−3=0
Step 1.1.2
Simplify by adding terms.
Step 1.1.2.1
Subtract nn from -2n−2n.
2n2-3n-4-3=02n2−3n−4−3=0
Step 1.1.2.2
Subtract 33 from -4−4.
2n2-3n-7=02n2−3n−7=0
2n2-3n-7=02n2−3n−7=0
2n2-3n-7=02n2−3n−7=0
2n2-3n-7=02n2−3n−7=0
Step 2
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 3
Substitute the values a=2a=2, b=-3b=−3, and c=-7c=−7 into the quadratic formula and solve for nn.
3±√(-3)2-4⋅(2⋅-7)2⋅23±√(−3)2−4⋅(2⋅−7)2⋅2
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise -3−3 to the power of 22.
n=3±√9-4⋅2⋅-72⋅2n=3±√9−4⋅2⋅−72⋅2
Step 4.1.2
Multiply -4⋅2⋅-7−4⋅2⋅−7.
Step 4.1.2.1
Multiply -4−4 by 22.
n=3±√9-8⋅-72⋅2n=3±√9−8⋅−72⋅2
Step 4.1.2.2
Multiply -8−8 by -7.
n=3±√9+562⋅2
n=3±√9+562⋅2
Step 4.1.3
Add 9 and 56.
n=3±√652⋅2
n=3±√652⋅2
Step 4.2
Multiply 2 by 2.
n=3±√654
n=3±√654
Step 5
The result can be shown in multiple forms.
Exact Form:
n=3±√654
Decimal Form:
n=2.76556443…,-1.26556443…