Enter a problem...
Algebra Examples
3√4a=423√4a=42
Step 1
To remove the radical on the left side of the equation, square both sides of the equation.
(3√4a)2=422(3√4a)2=422
Step 2
Step 2.1
Use n√ax=axnn√ax=axn to rewrite √4a√4a as (4a)12(4a)12.
(3(4a)12)2=422(3(4a)12)2=422
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify (3(4a)12)2(3(4a)12)2.
Step 2.2.1.1
Simplify the expression.
Step 2.2.1.1.1
Apply the product rule to 4a4a.
(3(412a12))2=422(3(412a12))2=422
Step 2.2.1.1.2
Rewrite 44 as 2222.
(3((22)12a12))2=422(3((22)12a12))2=422
Step 2.2.1.1.3
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
(3(22(12)a12))2=422(3(22(12)a12))2=422
(3(22(12)a12))2=422(3(22(12)a12))2=422
Step 2.2.1.2
Cancel the common factor of 22.
Step 2.2.1.2.1
Cancel the common factor.
(3(22(12)a12))2=422
Step 2.2.1.2.2
Rewrite the expression.
(3(21a12))2=422
(3(21a12))2=422
Step 2.2.1.3
Evaluate the exponent.
(3(2a12))2=422
Step 2.2.1.4
Multiply 2 by 3.
(6a12)2=422
Step 2.2.1.5
Apply the product rule to 6a12.
62(a12)2=422
Step 2.2.1.6
Raise 6 to the power of 2.
36(a12)2=422
Step 2.2.1.7
Multiply the exponents in (a12)2.
Step 2.2.1.7.1
Apply the power rule and multiply exponents, (am)n=amn.
36a12⋅2=422
Step 2.2.1.7.2
Cancel the common factor of 2.
Step 2.2.1.7.2.1
Cancel the common factor.
36a12⋅2=422
Step 2.2.1.7.2.2
Rewrite the expression.
36a1=422
36a1=422
36a1=422
Step 2.2.1.8
Simplify.
36a=422
36a=422
36a=422
Step 2.3
Simplify the right side.
Step 2.3.1
Raise 42 to the power of 2.
36a=1764
36a=1764
36a=1764
Step 3
Step 3.1
Divide each term in 36a=1764 by 36.
36a36=176436
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of 36.
Step 3.2.1.1
Cancel the common factor.
36a36=176436
Step 3.2.1.2
Divide a by 1.
a=176436
a=176436
a=176436
Step 3.3
Simplify the right side.
Step 3.3.1
Divide 1764 by 36.
a=49
a=49
a=49