Enter a problem...
Algebra Examples
f(x)=x(x-2)(x+2)f(x)=x(x−2)(x+2)
Step 1
Step 1.1
Simplify and reorder the polynomial.
Step 1.1.1
Simplify by multiplying through.
Step 1.1.1.1
Apply the distributive property.
(x⋅x+x⋅-2)(x+2)(x⋅x+x⋅−2)(x+2)
Step 1.1.1.2
Simplify the expression.
Step 1.1.1.2.1
Multiply xx by xx.
(x2+x⋅-2)(x+2)(x2+x⋅−2)(x+2)
Step 1.1.1.2.2
Move -2−2 to the left of xx.
(x2-2⋅x)(x+2)(x2−2⋅x)(x+2)
(x2-2⋅x)(x+2)(x2−2⋅x)(x+2)
(x2-2⋅x)(x+2)(x2−2⋅x)(x+2)
Step 1.1.2
Expand (x2-2x)(x+2)(x2−2x)(x+2) using the FOIL Method.
Step 1.1.2.1
Apply the distributive property.
x2(x+2)-2x(x+2)x2(x+2)−2x(x+2)
Step 1.1.2.2
Apply the distributive property.
x2x+x2⋅2-2x(x+2)x2x+x2⋅2−2x(x+2)
Step 1.1.2.3
Apply the distributive property.
x2x+x2⋅2-2x⋅x-2x⋅2x2x+x2⋅2−2x⋅x−2x⋅2
x2x+x2⋅2-2x⋅x-2x⋅2x2x+x2⋅2−2x⋅x−2x⋅2
Step 1.1.3
Simplify and combine like terms.
Step 1.1.3.1
Simplify each term.
Step 1.1.3.1.1
Multiply x2x2 by xx by adding the exponents.
Step 1.1.3.1.1.1
Multiply x2x2 by xx.
Step 1.1.3.1.1.1.1
Raise xx to the power of 11.
x2x1+x2⋅2-2x⋅x-2x⋅2x2x1+x2⋅2−2x⋅x−2x⋅2
Step 1.1.3.1.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
x2+1+x2⋅2-2x⋅x-2x⋅2x2+1+x2⋅2−2x⋅x−2x⋅2
x2+1+x2⋅2-2x⋅x-2x⋅2x2+1+x2⋅2−2x⋅x−2x⋅2
Step 1.1.3.1.1.2
Add 22 and 11.
x3+x2⋅2-2x⋅x-2x⋅2x3+x2⋅2−2x⋅x−2x⋅2
x3+x2⋅2-2x⋅x-2x⋅2x3+x2⋅2−2x⋅x−2x⋅2
Step 1.1.3.1.2
Move 22 to the left of x2x2.
x3+2⋅x2-2x⋅x-2x⋅2x3+2⋅x2−2x⋅x−2x⋅2
Step 1.1.3.1.3
Multiply xx by xx by adding the exponents.
Step 1.1.3.1.3.1
Move xx.
x3+2x2-2(x⋅x)-2x⋅2x3+2x2−2(x⋅x)−2x⋅2
Step 1.1.3.1.3.2
Multiply xx by xx.
x3+2x2-2x2-2x⋅2x3+2x2−2x2−2x⋅2
x3+2x2-2x2-2x⋅2x3+2x2−2x2−2x⋅2
Step 1.1.3.1.4
Multiply 22 by -2−2.
x3+2x2-2x2-4xx3+2x2−2x2−4x
x3+2x2-2x2-4xx3+2x2−2x2−4x
Step 1.1.3.2
Subtract 2x22x2 from 2x22x2.
x3+0-4xx3+0−4x
Step 1.1.3.3
Add x3x3 and 00.
x3-4xx3−4x
x3-4xx3−4x
x3-4xx3−4x
Step 1.2
The largest exponent is the degree of the polynomial.
33
33
Step 2
Since the degree is odd, the ends of the function will point in the opposite directions.
Odd
Step 3
Step 3.1
Simplify the polynomial, then reorder it left to right starting with the highest degree term.
Step 3.1.1
Simplify by multiplying through.
Step 3.1.1.1
Apply the distributive property.
(x⋅x+x⋅-2)(x+2)(x⋅x+x⋅−2)(x+2)
Step 3.1.1.2
Simplify the expression.
Step 3.1.1.2.1
Multiply xx by xx.
(x2+x⋅-2)(x+2)(x2+x⋅−2)(x+2)
Step 3.1.1.2.2
Move -2−2 to the left of xx.
(x2-2⋅x)(x+2)(x2−2⋅x)(x+2)
(x2-2⋅x)(x+2)(x2−2⋅x)(x+2)
(x2-2⋅x)(x+2)(x2−2⋅x)(x+2)
Step 3.1.2
Expand (x2-2x)(x+2)(x2−2x)(x+2) using the FOIL Method.
Step 3.1.2.1
Apply the distributive property.
x2(x+2)-2x(x+2)x2(x+2)−2x(x+2)
Step 3.1.2.2
Apply the distributive property.
x2x+x2⋅2-2x(x+2)x2x+x2⋅2−2x(x+2)
Step 3.1.2.3
Apply the distributive property.
x2x+x2⋅2-2x⋅x-2x⋅2x2x+x2⋅2−2x⋅x−2x⋅2
x2x+x2⋅2-2x⋅x-2x⋅2x2x+x2⋅2−2x⋅x−2x⋅2
Step 3.1.3
Simplify and combine like terms.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Multiply x2x2 by xx by adding the exponents.
Step 3.1.3.1.1.1
Multiply x2x2 by xx.
Step 3.1.3.1.1.1.1
Raise xx to the power of 11.
x2x1+x2⋅2-2x⋅x-2x⋅2x2x1+x2⋅2−2x⋅x−2x⋅2
Step 3.1.3.1.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
x2+1+x2⋅2-2x⋅x-2x⋅2x2+1+x2⋅2−2x⋅x−2x⋅2
x2+1+x2⋅2-2x⋅x-2x⋅2x2+1+x2⋅2−2x⋅x−2x⋅2
Step 3.1.3.1.1.2
Add 22 and 11.
x3+x2⋅2-2x⋅x-2x⋅2x3+x2⋅2−2x⋅x−2x⋅2
x3+x2⋅2-2x⋅x-2x⋅2x3+x2⋅2−2x⋅x−2x⋅2
Step 3.1.3.1.2
Move 22 to the left of x2x2.
x3+2⋅x2-2x⋅x-2x⋅2x3+2⋅x2−2x⋅x−2x⋅2
Step 3.1.3.1.3
Multiply xx by xx by adding the exponents.
Step 3.1.3.1.3.1
Move xx.
x3+2x2-2(x⋅x)-2x⋅2x3+2x2−2(x⋅x)−2x⋅2
Step 3.1.3.1.3.2
Multiply xx by xx.
x3+2x2-2x2-2x⋅2x3+2x2−2x2−2x⋅2
x3+2x2-2x2-2x⋅2x3+2x2−2x2−2x⋅2
Step 3.1.3.1.4
Multiply 22 by -2−2.
x3+2x2-2x2-4xx3+2x2−2x2−4x
x3+2x2-2x2-4xx3+2x2−2x2−4x
Step 3.1.3.2
Subtract 2x22x2 from 2x22x2.
x3+0-4xx3+0−4x
Step 3.1.3.3
Add x3x3 and 00.
x3-4xx3−4x
x3-4xx3−4x
x3-4xx3−4x
Step 3.2
The leading term in a polynomial is the term with the highest degree.
x3x3
Step 3.3
The leading coefficient in a polynomial is the coefficient of the leading term.
11
11
Step 4
Since the leading coefficient is positive, the graph rises to the right.
Positive
Step 5
Use the degree of the function, as well as the sign of the leading coefficient to determine the behavior.
1. Even and Positive: Rises to the left and rises to the right.
2. Even and Negative: Falls to the left and falls to the right.
3. Odd and Positive: Falls to the left and rises to the right.
4. Odd and Negative: Rises to the left and falls to the right
Step 6
Determine the behavior.
Falls to the left and rises to the right
Step 7