Enter a problem...
Algebra Examples
3x-2y123√8x4y3x−2y123√8x4y
Step 1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
31x2y123√8x4y31x2y123√8x4y
Step 2
Combine 33 and 1x21x2.
3x2y123√8x4y3x2y123√8x4y
Step 3
Combine 3x23x2 and y12y12.
3y12x23√8x4y3y12x23√8x4y
Step 4
Step 4.1
Rewrite 88 as 2323.
3y12x23√23x4y3y12x23√23x4y
Step 4.2
Factor out x3x3.
3y12x23√23(x3x)y3y12x23√23(x3x)y
Step 4.3
Rewrite 23x323x3 as (2x)3(2x)3.
3y12x23√(2x)3xy3y12x23√(2x)3xy
Step 4.4
Add parentheses.
3y12x23√(2x)3(xy)3y12x23√(2x)3(xy)
3y12x23√(2x)3(xy)3y12x23√(2x)3(xy)
Step 5
Pull terms out from under the radical.
3y12x2(2x3√xy)3y12x2(2x3√xy)
Step 6
Rewrite using the commutative property of multiplication.
23y12x2(x3√xy)23y12x2(x3√xy)
Step 7
Step 7.1
Combine 22 and 3y12x23y12x2.
2(3y12)x2(x3√xy)2(3y12)x2(x3√xy)
Step 7.2
Multiply 33 by 22.
6y12x2(x3√xy)6y12x2(x3√xy)
6y12x2(x3√xy)6y12x2(x3√xy)
Step 8
Step 8.1
Factor xx out of x2x2.
6y12x⋅x(x3√xy)6y12x⋅x(x3√xy)
Step 8.2
Factor xx out of x3√xyx3√xy.
6y12x⋅x(x(3√xy))6y12x⋅x(x(3√xy))
Step 8.3
Cancel the common factor.
6y12x⋅x(x3√xy)6y12x⋅x(x3√xy)
Step 8.4
Rewrite the expression.
6y12x3√xy6y12x3√xy
6y12x3√xy6y12x3√xy
Step 9
Combine 6y12x6y12x and 3√xy3√xy.
6y123√xyx6y123√xyx