Algebra Examples

Simplify 3x^-2y^(1/2) cube root of 8x^4y
3x-2y1238x4y3x2y1238x4y
Step 1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
31x2y1238x4y31x2y1238x4y
Step 2
Combine 33 and 1x21x2.
3x2y1238x4y3x2y1238x4y
Step 3
Combine 3x23x2 and y12y12.
3y12x238x4y3y12x238x4y
Step 4
Rewrite 8x4y8x4y as (2x)3(xy)(2x)3(xy).
Tap for more steps...
Step 4.1
Rewrite 88 as 2323.
3y12x2323x4y3y12x2323x4y
Step 4.2
Factor out x3x3.
3y12x2323(x3x)y3y12x2323(x3x)y
Step 4.3
Rewrite 23x323x3 as (2x)3(2x)3.
3y12x23(2x)3xy3y12x23(2x)3xy
Step 4.4
Add parentheses.
3y12x23(2x)3(xy)3y12x23(2x)3(xy)
3y12x23(2x)3(xy)3y12x23(2x)3(xy)
Step 5
Pull terms out from under the radical.
3y12x2(2x3xy)3y12x2(2x3xy)
Step 6
Rewrite using the commutative property of multiplication.
23y12x2(x3xy)23y12x2(x3xy)
Step 7
Multiply 23y12x223y12x2.
Tap for more steps...
Step 7.1
Combine 22 and 3y12x23y12x2.
2(3y12)x2(x3xy)2(3y12)x2(x3xy)
Step 7.2
Multiply 33 by 22.
6y12x2(x3xy)6y12x2(x3xy)
6y12x2(x3xy)6y12x2(x3xy)
Step 8
Cancel the common factor of xx.
Tap for more steps...
Step 8.1
Factor xx out of x2x2.
6y12xx(x3xy)6y12xx(x3xy)
Step 8.2
Factor xx out of x3xyx3xy.
6y12xx(x(3xy))6y12xx(x(3xy))
Step 8.3
Cancel the common factor.
6y12xx(x3xy)6y12xx(x3xy)
Step 8.4
Rewrite the expression.
6y12x3xy6y12x3xy
6y12x3xy6y12x3xy
Step 9
Combine 6y12x6y12x and 3xy3xy.
6y123xyx6y123xyx
 [x2  12  π  xdx ]  x2  12  π  xdx