Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the right side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply by .
Step 2.2.1.1.3.1.2
Multiply by .
Step 2.2.1.1.3.1.3
Multiply by .
Step 2.2.1.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.2.1.1.3.1.5
Multiply by by adding the exponents.
Step 2.2.1.1.3.1.5.1
Move .
Step 2.2.1.1.3.1.5.2
Multiply by .
Step 2.2.1.1.3.1.6
Multiply by .
Step 2.2.1.1.3.1.7
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.1.4
Apply the distributive property.
Step 2.2.1.1.5
Simplify.
Step 2.2.1.1.5.1
Multiply by .
Step 2.2.1.1.5.2
Multiply by .
Step 2.2.1.1.6
Apply the distributive property.
Step 2.2.1.1.7
Multiply by .
Step 2.2.1.1.8
Multiply by .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add and .
Step 2.2.1.2.2
Subtract from .
Step 3
Step 3.1
Since is on the right side of the equation, switch the sides so it is on the left side of the equation.
Step 3.2
Move all terms containing to the left side of the equation.
Step 3.2.1
Subtract from both sides of the equation.
Step 3.2.2
Subtract from .
Step 3.3
Subtract from both sides of the equation.
Step 3.4
Subtract from .
Step 3.5
Factor the left side of the equation.
Step 3.5.1
Factor out of .
Step 3.5.1.1
Factor out of .
Step 3.5.1.2
Factor out of .
Step 3.5.1.3
Factor out of .
Step 3.5.1.4
Factor out of .
Step 3.5.1.5
Factor out of .
Step 3.5.2
Let . Substitute for all occurrences of .
Step 3.5.3
Factor using the AC method.
Step 3.5.3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.5.3.2
Write the factored form using these integers.
Step 3.5.4
Factor.
Step 3.5.4.1
Replace all occurrences of with .
Step 3.5.4.2
Remove unnecessary parentheses.
Step 3.6
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.7
Set equal to and solve for .
Step 3.7.1
Set equal to .
Step 3.7.2
Add to both sides of the equation.
Step 3.8
Set equal to and solve for .
Step 3.8.1
Set equal to .
Step 3.8.2
Add to both sides of the equation.
Step 3.9
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Subtract from .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8