Enter a problem...
Algebra Examples
1k=(7.3×108)×(2×10-5)+11×10-41k=(7.3×108)×(2×10−5)+11×10−4
Step 1
Step 1.1
Multiply 7.37.3 by 22.
1k=14.6(108⋅10-5)+11⋅10-41k=14.6(108⋅10−5)+11⋅10−4
Step 1.2
Multiply 108108 by 10-510−5 by adding the exponents.
Step 1.2.1
Use the power rule aman=am+naman=am+n to combine exponents.
1k=14.6⋅108-5+11⋅10-41k=14.6⋅108−5+11⋅10−4
Step 1.2.2
Subtract 55 from 88.
1k=14.6⋅103+11⋅10-41k=14.6⋅103+11⋅10−4
1k=14.6⋅103+11⋅10-41k=14.6⋅103+11⋅10−4
Step 1.3
Divide using scientific notation.
Step 1.3.1
Group coefficients together and exponents together to divide numbers in scientific notation.
1k=14.6⋅103+(11)(110-4)1k=14.6⋅103+(11)(110−4)
Step 1.3.2
Divide 1 by 1.
1k=14.6⋅103+1110-4
Step 1.3.3
Move 10-4 to the numerator using the negative exponent rule 1b-n=bn.
1k=14.6⋅103+1⋅104
1k=14.6⋅103+1⋅104
Step 1.4
Move the decimal point in 14.6 to the left by 1 place and increase the power of 103 by 1.
1k=1.46⋅104+1⋅104
Step 1.5
Factor 104 out of 1.46⋅104+1⋅104.
1k=(1.46+1)⋅104
Step 1.6
Add 1.46 and 1.
1k=2.46⋅104
1k=2.46⋅104
Step 2
Step 2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
k,1,1
Step 2.2
The LCM of one and any expression is the expression.
k
k
Step 3
Step 3.1
Multiply each term in 1k=2.46⋅104 by k.
1kk=2.46⋅104k
Step 3.2
Simplify the left side.
Step 3.2.1
Cancel the common factor of k.
Step 3.2.1.1
Cancel the common factor.
1kk=2.46⋅104k
Step 3.2.1.2
Rewrite the expression.
1=2.46⋅104k
1=2.46⋅104k
1=2.46⋅104k
1=2.46⋅104k
Step 4
Step 4.1
Rewrite the equation as 2.46⋅104k=1.
2.46⋅104k=1
Step 4.2
Divide each term in 2.46⋅104k=1 by 2.46⋅104 and simplify.
Step 4.2.1
Divide each term in 2.46⋅104k=1 by 2.46⋅104.
2.46⋅104k2.46⋅104=12.46⋅104
Step 4.2.2
Simplify the left side.
Step 4.2.2.1
Cancel the common factor of 2.46.
Step 4.2.2.1.1
Cancel the common factor.
2.46⋅104k2.46⋅104=12.46⋅104
Step 4.2.2.1.2
Rewrite the expression.
104k104=12.46⋅104
104k104=12.46⋅104
Step 4.2.2.2
Cancel the common factor of 104.
Step 4.2.2.2.1
Cancel the common factor.
104k104=12.46⋅104
Step 4.2.2.2.2
Divide k by 1.
k=12.46⋅104
k=12.46⋅104
k=12.46⋅104
Step 4.2.3
Simplify the right side.
Step 4.2.3.1
Divide using scientific notation.
Step 4.2.3.1.1
Group coefficients together and exponents together to divide numbers in scientific notation.
k=(12.46)(1104)
Step 4.2.3.1.2
Divide 1 by 2.46.
k=0.‾406501104
Step 4.2.3.1.3
Move 104 to the numerator using the negative exponent rule 1bn=b-n.
k=0.‾40650⋅10-4
k=0.‾40650⋅10-4
Step 4.2.3.2
Move the decimal point in 0.‾40650 to the right by 1 place and decrease the power of 10-4 by 1.
k=4.‾06504⋅10-5
k=4.‾06504⋅10-5
k=4.‾06504⋅10-5
k=4.‾06504⋅10-5