Algebra Examples

Solve for x (|x|)/x=1
Step 1
Multiply both sides by .
Step 2
Simplify.
Tap for more steps...
Step 2.1
Simplify the left side.
Tap for more steps...
Step 2.1.1
Cancel the common factor of .
Tap for more steps...
Step 2.1.1.1
Cancel the common factor.
Step 2.1.1.2
Rewrite the expression.
Step 2.2
Simplify the right side.
Tap for more steps...
Step 2.2.1
Multiply by .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.2
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.2.1
First, use the positive value of the to find the first solution.
Step 3.2.2
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 3.2.2.1
Subtract from both sides of the equation.
Step 3.2.2.2
Subtract from .
Step 3.2.3
Since , the equation will always be true.
All real numbers
Step 3.2.4
Next, use the negative value of the to find the second solution.
Step 3.2.5
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 3.2.5.1
Add to both sides of the equation.
Step 3.2.5.2
Add and .
Step 3.2.6
Divide each term in by and simplify.
Tap for more steps...
Step 3.2.6.1
Divide each term in by .
Step 3.2.6.2
Simplify the left side.
Tap for more steps...
Step 3.2.6.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.6.2.1.1
Cancel the common factor.
Step 3.2.6.2.1.2
Divide by .
Step 3.2.6.3
Simplify the right side.
Tap for more steps...
Step 3.2.6.3.1
Divide by .
Step 3.2.7
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Exclude the solutions that do not make true.