Algebra Examples

Evaluate ( square root of a)/( square root of b)=x
ab=xab=x
Step 1
Cross multiply.
Tap for more steps...
Step 1.1
Cross multiply by setting the product of the numerator of the right side and the denominator of the left side equal to the product of the numerator of the left side and the denominator of the right side.
x(b)=ax(b)=a
Step 1.2
Simplify the left side.
Tap for more steps...
Step 1.2.1
Multiply xx by bb.
xb=axb=a
xb=axb=a
xb=axb=a
Step 2
Rewrite the equation as a=xba=xb.
a=xba=xb
Step 3
To remove the radical on the left side of the equation, square both sides of the equation.
a2=(xb)2a2=(xb)2
Step 4
Simplify each side of the equation.
Tap for more steps...
Step 4.1
Use nax=axnnax=axn to rewrite aa as a12a12.
(a12)2=(xb)2(a12)2=(xb)2
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Simplify (a12)2(a12)2.
Tap for more steps...
Step 4.2.1.1
Multiply the exponents in (a12)2(a12)2.
Tap for more steps...
Step 4.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
a122=(xb)2a122=(xb)2
Step 4.2.1.1.2
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.1.1.2.1
Cancel the common factor.
a122=(xb)2
Step 4.2.1.1.2.2
Rewrite the expression.
a1=(xb)2
a1=(xb)2
a1=(xb)2
Step 4.2.1.2
Simplify.
a=(xb)2
a=(xb)2
a=(xb)2
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Simplify (xb)2.
Tap for more steps...
Step 4.3.1.1
Apply the product rule to xb.
a=x2b2
Step 4.3.1.2
Rewrite b2 as b.
Tap for more steps...
Step 4.3.1.2.1
Use nax=axn to rewrite b as b12.
a=x2(b12)2
Step 4.3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
a=x2b122
Step 4.3.1.2.3
Combine 12 and 2.
a=x2b22
Step 4.3.1.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 4.3.1.2.4.1
Cancel the common factor.
a=x2b22
Step 4.3.1.2.4.2
Rewrite the expression.
a=x2b1
a=x2b1
Step 4.3.1.2.5
Simplify.
a=x2b
a=x2b
a=x2b
a=x2b
a=x2b
 [x2  12  π  xdx ]