Algebra Examples

Divide Using Long Polynomial Division (6x^4-20x^3+15x^2-8)÷(-x^2+2x-1)
Step 1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+--++-
Step 2
Divide the highest order term in the dividend by the highest order term in divisor .
-
-+--++-
Step 3
Multiply the new quotient term by the divisor.
-
-+--++-
+-+
Step 4
The expression needs to be subtracted from the dividend, so change all the signs in
-
-+--++-
-+-
Step 5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-
-+--++-
-+-
-+
Step 6
Pull the next terms from the original dividend down into the current dividend.
-
-+--++-
-+-
-++
Step 7
Divide the highest order term in the dividend by the highest order term in divisor .
-+
-+--++-
-+-
-++
Step 8
Multiply the new quotient term by the divisor.
-+
-+--++-
-+-
-++
-+-
Step 9
The expression needs to be subtracted from the dividend, so change all the signs in
-+
-+--++-
-+-
-++
+-+
Step 10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
-+--++-
-+-
-++
+-+
-+
Step 11
Pull the next terms from the original dividend down into the current dividend.
-+
-+--++-
-+-
-++
+-+
-+-
Step 12
Divide the highest order term in the dividend by the highest order term in divisor .
-++
-+--++-
-+-
-++
+-+
-+-
Step 13
Multiply the new quotient term by the divisor.
-++
-+--++-
-+-
-++
+-+
-+-
-+-
Step 14
The expression needs to be subtracted from the dividend, so change all the signs in
-++
-+--++-
-+-
-++
+-+
-+-
+-+
Step 15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-++
-+--++-
-+-
-++
+-+
-+-
+-+
--
Step 16
The final answer is the quotient plus the remainder over the divisor.