Algebra Examples

Factor by Grouping z^6-9z^3+8
z6-9z3+8z69z3+8
Step 1
Rewrite z6z6 as (z3)2(z3)2.
(z3)2-9z3+8(z3)29z3+8
Step 2
Let u=z3u=z3. Substitute uu for all occurrences of z3z3.
u2-9u+8u29u+8
Step 3
Factor u2-9u+8u29u+8 using the AC method.
Tap for more steps...
Step 3.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 88 and whose sum is -99.
-8,-18,1
Step 3.2
Write the factored form using these integers.
(u-8)(u-1)(u8)(u1)
(u-8)(u-1)(u8)(u1)
Step 4
Replace all occurrences of uu with z3z3.
(z3-8)(z3-1)(z38)(z31)
Step 5
Rewrite 88 as 2323.
(z3-23)(z3-1)(z323)(z31)
Step 6
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3b3=(ab)(a2+ab+b2) where a=za=z and b=2b=2.
(z-2)(z2+z2+22)(z3-1)(z2)(z2+z2+22)(z31)
Step 7
Simplify.
Tap for more steps...
Step 7.1
Move 22 to the left of zz.
(z-2)(z2+2z+22)(z3-1)(z2)(z2+2z+22)(z31)
Step 7.2
Raise 22 to the power of 22.
(z-2)(z2+2z+4)(z3-1)(z2)(z2+2z+4)(z31)
(z-2)(z2+2z+4)(z3-1)(z2)(z2+2z+4)(z31)
Step 8
Rewrite 11 as 1313.
(z-2)(z2+2z+4)(z3-13)(z2)(z2+2z+4)(z313)
Step 9
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3b3=(ab)(a2+ab+b2) where a=za=z and b=1b=1.
(z-2)(z2+2z+4)((z-1)(z2+z1+12))(z2)(z2+2z+4)((z1)(z2+z1+12))
Step 10
Factor.
Tap for more steps...
Step 10.1
Simplify.
Tap for more steps...
Step 10.1.1
Multiply z by 1.
(z-2)(z2+2z+4)((z-1)(z2+z+12))
Step 10.1.2
One to any power is one.
(z-2)(z2+2z+4)((z-1)(z2+z+1))
(z-2)(z2+2z+4)((z-1)(z2+z+1))
Step 10.2
Remove unnecessary parentheses.
(z-2)(z2+2z+4)(z-1)(z2+z+1)
(z-2)(z2+2z+4)(z-1)(z2+z+1)
 [x2  12  π  xdx ]