Enter a problem...
Algebra Examples
z6-9z3+8z6−9z3+8
Step 1
Rewrite z6z6 as (z3)2(z3)2.
(z3)2-9z3+8(z3)2−9z3+8
Step 2
Let u=z3u=z3. Substitute uu for all occurrences of z3z3.
u2-9u+8u2−9u+8
Step 3
Step 3.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 88 and whose sum is -9−9.
-8,-1−8,−1
Step 3.2
Write the factored form using these integers.
(u-8)(u-1)(u−8)(u−1)
(u-8)(u-1)(u−8)(u−1)
Step 4
Replace all occurrences of uu with z3z3.
(z3-8)(z3-1)(z3−8)(z3−1)
Step 5
Rewrite 88 as 2323.
(z3-23)(z3-1)(z3−23)(z3−1)
Step 6
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=za=z and b=2b=2.
(z-2)(z2+z⋅2+22)(z3-1)(z−2)(z2+z⋅2+22)(z3−1)
Step 7
Step 7.1
Move 22 to the left of zz.
(z-2)(z2+2z+22)(z3-1)(z−2)(z2+2z+22)(z3−1)
Step 7.2
Raise 22 to the power of 22.
(z-2)(z2+2z+4)(z3-1)(z−2)(z2+2z+4)(z3−1)
(z-2)(z2+2z+4)(z3-1)(z−2)(z2+2z+4)(z3−1)
Step 8
Rewrite 11 as 1313.
(z-2)(z2+2z+4)(z3-13)(z−2)(z2+2z+4)(z3−13)
Step 9
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=za=z and b=1b=1.
(z-2)(z2+2z+4)((z-1)(z2+z⋅1+12))(z−2)(z2+2z+4)((z−1)(z2+z⋅1+12))
Step 10
Step 10.1
Simplify.
Step 10.1.1
Multiply z by 1.
(z-2)(z2+2z+4)((z-1)(z2+z+12))
Step 10.1.2
One to any power is one.
(z-2)(z2+2z+4)((z-1)(z2+z+1))
(z-2)(z2+2z+4)((z-1)(z2+z+1))
Step 10.2
Remove unnecessary parentheses.
(z-2)(z2+2z+4)(z-1)(z2+z+1)
(z-2)(z2+2z+4)(z-1)(z2+z+1)