Algebra Examples

Expand the Logarithmic Expression log base 9 of ((6^5)/((5)(11)))^4
log9((65(5)(11))4)log9((65(5)(11))4)
Step 1
Expand log9((65(5)(11))4)log9((65(5)(11))4) by moving 44 outside the logarithm.
4log9(65(5)(11))4log9(65(5)(11))
Step 2
Multiply 55 by 1111.
4log9(6555)4log9(6555)
Step 3
Raise 66 to the power of 55.
4log9(777655)4log9(777655)
Step 4
Rewrite log9(777655)log9(777655) as log9(7776)-log9(55)log9(7776)log9(55).
4(log9(7776)-log9(55))4(log9(7776)log9(55))
Step 5
Rewrite log9(55)log9(55) as log9(5(11))log9(5(11)).
4(log9(7776)-log9(5(11)))4(log9(7776)log9(5(11)))
Step 6
Rewrite log9(5(11))log9(5(11)) as log9(5)+log9(11)log9(5)+log9(11).
4(log9(7776)-(log9(5)+log9(11)))4(log9(7776)(log9(5)+log9(11)))
Step 7
Apply the distributive property.
4(log9(7776)-log9(5)-log9(11))4(log9(7776)log9(5)log9(11))
Step 8
Simplify each term.
Tap for more steps...
Step 8.1
Rewrite log9(7776)log9(7776) as log9(2535)log9(2535).
4(log9(2535)-log9(5)-log9(11))4(log9(2535)log9(5)log9(11))
Step 8.2
Rewrite log9(2535)log9(2535) as log9(25)+log9(35)log9(25)+log9(35).
4(log9(25)+log9(35)-log9(5)-log9(11))4(log9(25)+log9(35)log9(5)log9(11))
Step 8.3
Simplify each term.
Tap for more steps...
Step 8.3.1
Expand log9(25)log9(25) by moving 55 outside the logarithm.
4(5log9(2)+log9(35)-log9(5)-log9(11))4(5log9(2)+log9(35)log9(5)log9(11))
Step 8.3.2
Expand log9(35)log9(35) by moving 55 outside the logarithm.
4(5log9(2)+5log9(3)-log9(5)-log9(11))4(5log9(2)+5log9(3)log9(5)log9(11))
Step 8.3.3
Logarithm base 99 of 33 is 1212.
4(5log9(2)+5(12)-log9(5)-log9(11))4(5log9(2)+5(12)log9(5)log9(11))
Step 8.3.4
Combine 55 and 1212.
4(5log9(2)+52-log9(5)-log9(11))4(5log9(2)+52log9(5)log9(11))
4(5log9(2)+52-log9(5)-log9(11))4(5log9(2)+52log9(5)log9(11))
4(5log9(2)+52-log9(5)-log9(11))4(5log9(2)+52log9(5)log9(11))
Step 9
Apply the distributive property.
4(5log9(2))+4(52)+4(-log9(5))+4(-log9(11))4(5log9(2))+4(52)+4(log9(5))+4(log9(11))
Step 10
Simplify.
Tap for more steps...
Step 10.1
Multiply 55 by 44.
20log9(2)+4(52)+4(-log9(5))+4(-log9(11))20log9(2)+4(52)+4(log9(5))+4(log9(11))
Step 10.2
Cancel the common factor of 22.
Tap for more steps...
Step 10.2.1
Factor 22 out of 44.
20log9(2)+2(2)52+4(-log9(5))+4(-log9(11))20log9(2)+2(2)52+4(log9(5))+4(log9(11))
Step 10.2.2
Cancel the common factor.
20log9(2)+2252+4(-log9(5))+4(-log9(11))
Step 10.2.3
Rewrite the expression.
20log9(2)+25+4(-log9(5))+4(-log9(11))
20log9(2)+25+4(-log9(5))+4(-log9(11))
Step 10.3
Multiply 2 by 5.
20log9(2)+10+4(-log9(5))+4(-log9(11))
Step 10.4
Multiply -1 by 4.
20log9(2)+10-4log9(5)+4(-log9(11))
Step 10.5
Multiply -1 by 4.
20log9(2)+10-4log9(5)-4log9(11)
20log9(2)+10-4log9(5)-4log9(11)
 [x2  12  π  xdx ]