Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 1.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 1.3.1
First, use the positive value of the to find the first solution.
Step 1.3.2
Next, use the negative value of the to find the second solution.
Step 1.3.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2
Step 2.1
Replace all occurrences of with in each equation.
Step 2.1.1
Replace all occurrences of in with .
Step 2.1.2
Simplify the left side.
Step 2.1.2.1
Simplify .
Step 2.1.2.1.1
Rewrite as .
Step 2.1.2.1.1.1
Use to rewrite as .
Step 2.1.2.1.1.2
Apply the power rule and multiply exponents, .
Step 2.1.2.1.1.3
Combine and .
Step 2.1.2.1.1.4
Cancel the common factor of .
Step 2.1.2.1.1.4.1
Cancel the common factor.
Step 2.1.2.1.1.4.2
Rewrite the expression.
Step 2.1.2.1.1.5
Simplify.
Step 2.1.2.1.2
Subtract from .
Step 2.2
Solve for in .
Step 2.2.1
Move all terms not containing to the right side of the equation.
Step 2.2.1.1
Subtract from both sides of the equation.
Step 2.2.1.2
Subtract from .
Step 2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.2.3
Simplify .
Step 2.2.3.1
Rewrite as .
Step 2.2.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 2.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.2.4.1
First, use the positive value of the to find the first solution.
Step 2.2.4.2
Next, use the negative value of the to find the second solution.
Step 2.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 2.3
Replace all occurrences of with in each equation.
Step 2.3.1
Replace all occurrences of in with .
Step 2.3.2
Simplify the right side.
Step 2.3.2.1
Simplify .
Step 2.3.2.1.1
Raise to the power of .
Step 2.3.2.1.2
Multiply by .
Step 2.3.2.1.3
Subtract from .
Step 2.3.2.1.4
Rewrite as .
Step 2.3.2.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 2.4
Replace all occurrences of with in each equation.
Step 2.4.1
Replace all occurrences of in with .
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify .
Step 2.4.2.1.1
Raise to the power of .
Step 2.4.2.1.2
Multiply by .
Step 2.4.2.1.3
Subtract from .
Step 2.4.2.1.4
Rewrite as .
Step 2.4.2.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 3
Step 3.1
Replace all occurrences of with in each equation.
Step 3.1.1
Replace all occurrences of in with .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Simplify .
Step 3.1.2.1.1
Simplify each term.
Step 3.1.2.1.1.1
Apply the product rule to .
Step 3.1.2.1.1.2
Raise to the power of .
Step 3.1.2.1.1.3
Multiply by .
Step 3.1.2.1.1.4
Rewrite as .
Step 3.1.2.1.1.4.1
Use to rewrite as .
Step 3.1.2.1.1.4.2
Apply the power rule and multiply exponents, .
Step 3.1.2.1.1.4.3
Combine and .
Step 3.1.2.1.1.4.4
Cancel the common factor of .
Step 3.1.2.1.1.4.4.1
Cancel the common factor.
Step 3.1.2.1.1.4.4.2
Rewrite the expression.
Step 3.1.2.1.1.4.5
Simplify.
Step 3.1.2.1.2
Subtract from .
Step 3.2
Solve for in .
Step 3.2.1
Move all terms not containing to the right side of the equation.
Step 3.2.1.1
Subtract from both sides of the equation.
Step 3.2.1.2
Subtract from .
Step 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.2.3
Simplify .
Step 3.2.3.1
Rewrite as .
Step 3.2.3.2
Pull terms out from under the radical, assuming positive real numbers.
Step 3.2.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.2.4.1
First, use the positive value of the to find the first solution.
Step 3.2.4.2
Next, use the negative value of the to find the second solution.
Step 3.2.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.3
Replace all occurrences of with in each equation.
Step 3.3.1
Replace all occurrences of in with .
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Raise to the power of .
Step 3.3.2.1.2
Multiply by .
Step 3.3.2.1.3
Subtract from .
Step 3.3.2.1.4
Rewrite as .
Step 3.3.2.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 3.3.2.1.6
Multiply by .
Step 3.4
Replace all occurrences of with in each equation.
Step 3.4.1
Replace all occurrences of in with .
Step 3.4.2
Simplify the right side.
Step 3.4.2.1
Simplify .
Step 3.4.2.1.1
Raise to the power of .
Step 3.4.2.1.2
Multiply by .
Step 3.4.2.1.3
Subtract from .
Step 3.4.2.1.4
Rewrite as .
Step 3.4.2.1.5
Pull terms out from under the radical, assuming positive real numbers.
Step 3.4.2.1.6
Multiply by .
Step 4
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 5
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 6