Algebra Examples

Solve for x cube root of 18x^2-81x=x
Step 1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 2
Simplify each side of the equation.
Tap for more steps...
Step 2.1
Use to rewrite as .
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Simplify .
Tap for more steps...
Step 2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.1.1.2.1
Cancel the common factor.
Step 2.2.1.1.2.2
Rewrite the expression.
Step 2.2.1.2
Simplify.
Step 3
Solve for .
Tap for more steps...
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Factor the left side of the equation.
Tap for more steps...
Step 3.2.1
Factor out of .
Tap for more steps...
Step 3.2.1.1
Reorder the expression.
Tap for more steps...
Step 3.2.1.1.1
Move .
Step 3.2.1.1.2
Reorder and .
Step 3.2.1.2
Factor out of .
Step 3.2.1.3
Factor out of .
Step 3.2.1.4
Factor out of .
Step 3.2.1.5
Factor out of .
Step 3.2.1.6
Factor out of .
Step 3.2.2
Factor using the perfect square rule.
Tap for more steps...
Step 3.2.2.1
Rewrite as .
Step 3.2.2.2
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 3.2.2.3
Rewrite the polynomial.
Step 3.2.2.4
Factor using the perfect square trinomial rule , where and .
Step 3.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.4
Set equal to .
Step 3.5
Set equal to and solve for .
Tap for more steps...
Step 3.5.1
Set equal to .
Step 3.5.2
Solve for .
Tap for more steps...
Step 3.5.2.1
Set the equal to .
Step 3.5.2.2
Add to both sides of the equation.
Step 3.6
The final solution is all the values that make true.