Enter a problem...
Algebra Examples
Step 1
Write as an equation.
Step 2
Interchange the variables.
Step 3
Step 3.1
Rewrite the equation as .
Step 3.2
Subtract from both sides of the equation.
Step 3.3
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3.4
Simplify each side of the equation.
Step 3.4.1
Use to rewrite as .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Multiply the exponents in .
Step 3.4.2.1.1
Apply the power rule and multiply exponents, .
Step 3.4.2.1.2
Cancel the common factor of .
Step 3.4.2.1.2.1
Cancel the common factor.
Step 3.4.2.1.2.2
Rewrite the expression.
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Simplify .
Step 3.4.3.1.1
Use the Binomial Theorem.
Step 3.4.3.1.2
Simplify each term.
Step 3.4.3.1.2.1
Multiply by .
Step 3.4.3.1.2.2
Raise to the power of .
Step 3.4.3.1.2.3
Multiply by .
Step 3.4.3.1.2.4
Raise to the power of .
Step 3.5
Solve for .
Step 3.5.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.5.2
Expand by moving outside the logarithm.
Step 3.5.3
Divide each term in by and simplify.
Step 3.5.3.1
Divide each term in by .
Step 3.5.3.2
Simplify the left side.
Step 3.5.3.2.1
Cancel the common factor of .
Step 3.5.3.2.1.1
Cancel the common factor.
Step 3.5.3.2.1.2
Divide by .
Step 4
Replace with to show the final answer.
Step 5
Step 5.1
To verify the inverse, check if and .
Step 5.2
Evaluate .
Step 5.2.1
Set up the composite result function.
Step 5.2.2
Evaluate by substituting in the value of into .
Step 5.2.3
Simplify the numerator.
Step 5.2.3.1
Simplify each term.
Step 5.2.3.1.1
Apply the distributive property.
Step 5.2.3.1.2
Multiply by .
Step 5.2.3.2
Subtract from .
Step 5.3
Evaluate .
Step 5.3.1
Set up the composite result function.
Step 5.3.2
Evaluate by substituting in the value of into .
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Use the change of base rule .
Step 5.3.3.2
Exponentiation and log are inverse functions.
Step 5.3.3.3
Make each term match the terms from the binomial theorem formula.
Step 5.3.3.4
Factor using the binomial theorem.
Step 5.3.3.5
Pull terms out from under the radical, assuming real numbers.
Step 5.3.4
Combine the opposite terms in .
Step 5.3.4.1
Add and .
Step 5.3.4.2
Add and .
Step 5.4
Since and , then is the inverse of .