Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Add to both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Simplify.
Step 2.2.1.1.2.1
Multiply by .
Step 2.2.1.1.2.2
Multiply by .
Step 2.2.1.1.2.3
Multiply by .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Subtract from .
Step 2.2.1.2.2
Add and .
Step 2.3
Replace all occurrences of in with .
Step 2.4
Simplify the left side.
Step 2.4.1
Simplify .
Step 2.4.1.1
Simplify each term.
Step 2.4.1.1.1
Apply the distributive property.
Step 2.4.1.1.2
Simplify.
Step 2.4.1.1.2.1
Multiply by .
Step 2.4.1.1.2.2
Multiply by .
Step 2.4.1.1.2.3
Multiply by .
Step 2.4.1.2
Simplify by adding terms.
Step 2.4.1.2.1
Add and .
Step 2.4.1.2.2
Add and .
Step 3
Step 3.1
Move all terms not containing to the right side of the equation.
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Subtract from both sides of the equation.
Step 3.1.3
Add and .
Step 3.2
Divide each term in by and simplify.
Step 3.2.1
Divide each term in by .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Cancel the common factor of .
Step 3.2.2.1.1
Cancel the common factor.
Step 3.2.2.1.2
Divide by .
Step 3.2.3
Simplify the right side.
Step 3.2.3.1
Simplify each term.
Step 3.2.3.1.1
Cancel the common factor of and .
Step 3.2.3.1.1.1
Factor out of .
Step 3.2.3.1.1.2
Cancel the common factors.
Step 3.2.3.1.1.2.1
Factor out of .
Step 3.2.3.1.1.2.2
Cancel the common factor.
Step 3.2.3.1.1.2.3
Rewrite the expression.
Step 3.2.3.1.2
Move the negative in front of the fraction.
Step 3.2.3.1.3
Cancel the common factor of and .
Step 3.2.3.1.3.1
Factor out of .
Step 3.2.3.1.3.2
Cancel the common factors.
Step 3.2.3.1.3.2.1
Factor out of .
Step 3.2.3.1.3.2.2
Cancel the common factor.
Step 3.2.3.1.3.2.3
Rewrite the expression.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Cancel the common factor of .
Step 4.2.1.1.2.1
Move the leading negative in into the numerator.
Step 4.2.1.1.2.2
Factor out of .
Step 4.2.1.1.2.3
Factor out of .
Step 4.2.1.1.2.4
Cancel the common factor.
Step 4.2.1.1.2.5
Rewrite the expression.
Step 4.2.1.1.3
Combine and .
Step 4.2.1.1.4
Multiply by .
Step 4.2.1.1.5
Cancel the common factor of .
Step 4.2.1.1.5.1
Factor out of .
Step 4.2.1.1.5.2
Factor out of .
Step 4.2.1.1.5.3
Cancel the common factor.
Step 4.2.1.1.5.4
Rewrite the expression.
Step 4.2.1.1.6
Combine and .
Step 4.2.1.1.7
Multiply by .
Step 4.2.1.1.8
Move the negative in front of the fraction.
Step 4.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.3
Combine and .
Step 4.2.1.4
Combine the numerators over the common denominator.
Step 4.2.1.5
Simplify the numerator.
Step 4.2.1.5.1
Multiply by .
Step 4.2.1.5.2
Add and .
Step 4.2.1.6
To write as a fraction with a common denominator, multiply by .
Step 4.2.1.7
Combine and .
Step 4.2.1.8
Combine the numerators over the common denominator.
Step 4.2.1.9
Combine the numerators over the common denominator.
Step 4.2.1.10
Multiply by .
Step 4.2.1.11
Add and .
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the right side.
Step 4.4.1
Simplify .
Step 4.4.1.1
Simplify each term.
Step 4.4.1.1.1
Apply the distributive property.
Step 4.4.1.1.2
Multiply .
Step 4.4.1.1.2.1
Multiply by .
Step 4.4.1.1.2.2
Combine and .
Step 4.4.1.1.2.3
Multiply by .
Step 4.4.1.1.3
Multiply .
Step 4.4.1.1.3.1
Combine and .
Step 4.4.1.1.3.2
Multiply by .
Step 4.4.1.1.4
Move the negative in front of the fraction.
Step 4.4.1.2
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.3
Combine and .
Step 4.4.1.4
Combine the numerators over the common denominator.
Step 4.4.1.5
Simplify the numerator.
Step 4.4.1.5.1
Multiply by .
Step 4.4.1.5.2
Add and .
Step 4.4.1.6
To write as a fraction with a common denominator, multiply by .
Step 4.4.1.7
Combine and .
Step 4.4.1.8
Combine the numerators over the common denominator.
Step 4.4.1.9
Combine the numerators over the common denominator.
Step 4.4.1.10
Multiply by .
Step 4.4.1.11
Add and .
Step 5
Step 5.1
Multiply both sides by .
Step 5.2
Simplify.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Cancel the common factor of .
Step 5.2.1.1.1.1
Cancel the common factor.
Step 5.2.1.1.1.2
Rewrite the expression.
Step 5.2.1.1.2
Reorder and .
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Multiply by .
Step 5.3
Solve for .
Step 5.3.1
Move all terms not containing to the right side of the equation.
Step 5.3.1.1
Subtract from both sides of the equation.
Step 5.3.1.2
Subtract from .
Step 5.3.2
Divide each term in by and simplify.
Step 5.3.2.1
Divide each term in by .
Step 5.3.2.2
Simplify the left side.
Step 5.3.2.2.1
Cancel the common factor of .
Step 5.3.2.2.1.1
Cancel the common factor.
Step 5.3.2.2.1.2
Divide by .
Step 5.3.2.3
Simplify the right side.
Step 5.3.2.3.1
Divide by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the right side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify the numerator.
Step 6.2.1.1.1
Multiply by .
Step 6.2.1.1.2
Subtract from .
Step 6.2.1.2
Divide by .
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Combine the numerators over the common denominator.
Step 6.4.1.2
Simplify the expression.
Step 6.4.1.2.1
Multiply by .
Step 6.4.1.2.2
Add and .
Step 6.4.1.2.3
Divide by .
Step 7
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 8
The result can be shown in multiple forms.
Point Form:
Equation Form: