Enter a problem...
Algebra Examples
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Rewrite as .
Step 2.2.1.1.2
Expand using the FOIL Method.
Step 2.2.1.1.2.1
Apply the distributive property.
Step 2.2.1.1.2.2
Apply the distributive property.
Step 2.2.1.1.2.3
Apply the distributive property.
Step 2.2.1.1.3
Simplify and combine like terms.
Step 2.2.1.1.3.1
Simplify each term.
Step 2.2.1.1.3.1.1
Multiply by .
Step 2.2.1.1.3.1.2
Multiply by .
Step 2.2.1.1.3.1.3
Multiply by .
Step 2.2.1.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 2.2.1.1.3.1.5
Multiply by by adding the exponents.
Step 2.2.1.1.3.1.5.1
Move .
Step 2.2.1.1.3.1.5.2
Multiply by .
Step 2.2.1.1.3.1.6
Multiply by .
Step 2.2.1.1.3.1.7
Multiply by .
Step 2.2.1.1.3.2
Subtract from .
Step 2.2.1.1.4
Apply the distributive property.
Step 2.2.1.1.5
Simplify.
Step 2.2.1.1.5.1
Multiply by .
Step 2.2.1.1.5.2
Multiply by .
Step 2.2.1.2
Subtract from .
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Step 3.4.1
Simplify the numerator.
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply .
Step 3.4.1.2.1
Multiply by .
Step 3.4.1.2.2
Multiply by .
Step 3.4.1.3
Subtract from .
Step 3.4.1.4
Rewrite as .
Step 3.4.1.4.1
Factor out of .
Step 3.4.1.4.2
Rewrite as .
Step 3.4.1.5
Pull terms out from under the radical.
Step 3.4.2
Multiply by .
Step 3.4.3
Simplify .
Step 3.5
Simplify the expression to solve for the portion of the .
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Subtract from .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.4.1
Factor out of .
Step 3.5.1.4.2
Rewrite as .
Step 3.5.1.5
Pull terms out from under the radical.
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.5.4
Change the to .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Subtract from .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.4.1
Factor out of .
Step 3.6.1.4.2
Rewrite as .
Step 3.6.1.5
Pull terms out from under the radical.
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Change the to .
Step 3.7
The final answer is the combination of both solutions.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Multiply by .
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.2
Subtract from .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Apply the distributive property.
Step 5.2.1.1.2
Multiply by .
Step 5.2.1.1.3
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8