Enter a problem...
Algebra Examples
Step 1
Step 1.1
Move all terms not containing to the right side of the equation.
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Subtract from both sides of the equation.
Step 1.2
Complete the square for .
Step 1.2.1
Move .
Step 1.2.2
Use the form , to find the values of , , and .
Step 1.2.3
Consider the vertex form of a parabola.
Step 1.2.4
Find the value of using the formula .
Step 1.2.4.1
Substitute the values of and into the formula .
Step 1.2.4.2
Simplify the right side.
Step 1.2.4.2.1
Cancel the common factor of and .
Step 1.2.4.2.1.1
Factor out of .
Step 1.2.4.2.1.2
Cancel the common factors.
Step 1.2.4.2.1.2.1
Factor out of .
Step 1.2.4.2.1.2.2
Cancel the common factor.
Step 1.2.4.2.1.2.3
Rewrite the expression.
Step 1.2.4.2.2
Cancel the common factor of and .
Step 1.2.4.2.2.1
Factor out of .
Step 1.2.4.2.2.2
Cancel the common factors.
Step 1.2.4.2.2.2.1
Factor out of .
Step 1.2.4.2.2.2.2
Cancel the common factor.
Step 1.2.4.2.2.2.3
Rewrite the expression.
Step 1.2.4.2.2.2.4
Divide by .
Step 1.2.5
Find the value of using the formula .
Step 1.2.5.1
Substitute the values of , and into the formula .
Step 1.2.5.2
Simplify the right side.
Step 1.2.5.2.1
Simplify each term.
Step 1.2.5.2.1.1
Raise to the power of .
Step 1.2.5.2.1.2
Multiply by .
Step 1.2.5.2.1.3
Divide by .
Step 1.2.5.2.1.4
Multiply by .
Step 1.2.5.2.2
Add and .
Step 1.2.6
Substitute the values of , , and into the vertex form .
Step 1.3
Set equal to the new right side.
Step 2
Use the vertex form, , to determine the values of , , and .
Step 3
Since the value of is negative, the parabola opens left.
Opens Left
Step 4
Find the vertex .
Step 5
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
Step 5.2
Substitute the value of into the formula.
Step 5.3
Simplify.
Step 5.3.1
Multiply by .
Step 5.3.2
Move the negative in front of the fraction.
Step 6
Step 6.1
The focus of a parabola can be found by adding to the x-coordinate if the parabola opens left or right.
Step 6.2
Substitute the known values of , , and into the formula and simplify.
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
Step 8