Enter a problem...
Algebra Examples
y=x3+x2+x+1y=x3+x2+x+1
Step 1
Step 1.1
Replace the variable xx with -2−2 in the expression.
f(-2)=(-2)3+(-2)2-2+1f(−2)=(−2)3+(−2)2−2+1
Step 1.2
Simplify the result.
Step 1.2.1
Remove parentheses.
f(-2)=(-2)3+(-2)2-2+1f(−2)=(−2)3+(−2)2−2+1
Step 1.2.2
Simplify each term.
Step 1.2.2.1
Raise -2−2 to the power of 33.
f(-2)=-8+(-2)2-2+1f(−2)=−8+(−2)2−2+1
Step 1.2.2.2
Raise -2−2 to the power of 22.
f(-2)=-8+4-2+1f(−2)=−8+4−2+1
f(-2)=-8+4-2+1f(−2)=−8+4−2+1
Step 1.2.3
Simplify by adding and subtracting.
Step 1.2.3.1
Add -8−8 and 44.
f(-2)=-4-2+1f(−2)=−4−2+1
Step 1.2.3.2
Subtract 22 from -4−4.
f(-2)=-6+1f(−2)=−6+1
Step 1.2.3.3
Add -6−6 and 11.
f(-2)=-5f(−2)=−5
f(-2)=-5f(−2)=−5
Step 1.2.4
The final answer is -5−5.
-5−5
-5−5
Step 1.3
Convert -5−5 to decimal.
y=-5y=−5
y=-5y=−5
Step 2
Step 2.1
Replace the variable xx with -1−1 in the expression.
f(-1)=(-1)3+(-1)2-1+1f(−1)=(−1)3+(−1)2−1+1
Step 2.2
Simplify the result.
Step 2.2.1
Remove parentheses.
f(-1)=(-1)3+(-1)2-1+1f(−1)=(−1)3+(−1)2−1+1
Step 2.2.2
Simplify each term.
Step 2.2.2.1
Raise -1−1 to the power of 33.
f(-1)=-1+(-1)2-1+1f(−1)=−1+(−1)2−1+1
Step 2.2.2.2
Raise -1−1 to the power of 22.
f(-1)=-1+1-1+1f(−1)=−1+1−1+1
f(-1)=-1+1-1+1f(−1)=−1+1−1+1
Step 2.2.3
Simplify by adding and subtracting.
Step 2.2.3.1
Add -1−1 and 11.
f(-1)=0-1+1f(−1)=0−1+1
Step 2.2.3.2
Subtract 11 from 00.
f(-1)=-1+1f(−1)=−1+1
Step 2.2.3.3
Add -1−1 and 11.
f(-1)=0f(−1)=0
f(-1)=0f(−1)=0
Step 2.2.4
The final answer is 00.
00
00
Step 2.3
Convert 00 to decimal.
y=0y=0
y=0y=0
Step 3
Step 3.1
Replace the variable xx with 00 in the expression.
f(0)=(0)3+(0)2+0+1f(0)=(0)3+(0)2+0+1
Step 3.2
Simplify the result.
Step 3.2.1
Remove parentheses.
f(0)=(0)3+(0)2+0+1
Step 3.2.2
Simplify each term.
Step 3.2.2.1
Raising 0 to any positive power yields 0.
f(0)=0+(0)2+0+1
Step 3.2.2.2
Raising 0 to any positive power yields 0.
f(0)=0+0+0+1
f(0)=0+0+0+1
Step 3.2.3
Simplify by adding numbers.
Step 3.2.3.1
Add 0 and 0.
f(0)=0+0+1
Step 3.2.3.2
Add 0 and 0.
f(0)=0+1
Step 3.2.3.3
Add 0 and 1.
f(0)=1
f(0)=1
Step 3.2.4
The final answer is 1.
1
1
Step 3.3
Convert 1 to decimal.
y=1
y=1
Step 4
Step 4.1
Replace the variable x with 1 in the expression.
f(1)=(1)3+(1)2+1+1
Step 4.2
Simplify the result.
Step 4.2.1
Remove parentheses.
f(1)=(1)3+(1)2+1+1
Step 4.2.2
Simplify each term.
Step 4.2.2.1
One to any power is one.
f(1)=1+(1)2+1+1
Step 4.2.2.2
One to any power is one.
f(1)=1+1+1+1
f(1)=1+1+1+1
Step 4.2.3
Simplify by adding numbers.
Step 4.2.3.1
Add 1 and 1.
f(1)=2+1+1
Step 4.2.3.2
Add 2 and 1.
f(1)=3+1
Step 4.2.3.3
Add 3 and 1.
f(1)=4
f(1)=4
Step 4.2.4
The final answer is 4.
4
4
Step 4.3
Convert 4 to decimal.
y=4
y=4
Step 5
Step 5.1
Replace the variable x with 2 in the expression.
f(2)=(2)3+(2)2+2+1
Step 5.2
Simplify the result.
Step 5.2.1
Remove parentheses.
f(2)=(2)3+(2)2+2+1
Step 5.2.2
Simplify each term.
Step 5.2.2.1
Raise 2 to the power of 3.
f(2)=8+(2)2+2+1
Step 5.2.2.2
Raise 2 to the power of 2.
f(2)=8+4+2+1
f(2)=8+4+2+1
Step 5.2.3
Simplify by adding numbers.
Step 5.2.3.1
Add 8 and 4.
f(2)=12+2+1
Step 5.2.3.2
Add 12 and 2.
f(2)=14+1
Step 5.2.3.3
Add 14 and 1.
f(2)=15
f(2)=15
Step 5.2.4
The final answer is 15.
15
15
Step 5.3
Convert 15 to decimal.
y=15
y=15
Step 6
The cubic function can be graphed using the function behavior and the points.
xy-2-5-100114215
Step 7
The cubic function can be graphed using the function behavior and the selected points.
Falls to the left and rises to the right
xy-2-5-100114215
Step 8