Algebra Examples

Solve Using the Quadratic Formula x=(3+- square root of (-3)^2-4*2*-5)/(2(2))
x=3+-(-3)2-42-52(2)x=3+(3)24252(2)
Step 1
Replace all occurrences of ++- with a single -. A plus sign followed by a minus sign has the same mathematical meaning as a single minus sign because 1-1=-111=1
x=3-(-3)2-42-52(2)x=3(3)24252(2)
Step 2
Move all terms to the left side of the equation and simplify.
Tap for more steps...
Step 2.1
Simplify the right side.
Tap for more steps...
Step 2.1.1
Simplify 3-(-3)2-42-52(2)3(3)24252(2).
Tap for more steps...
Step 2.1.1.1
Simplify the numerator.
Tap for more steps...
Step 2.1.1.1.1
Raise -33 to the power of 22.
x=3-9-42-52(2)x=394252(2)
Step 2.1.1.1.2
Multiply -42-5425.
Tap for more steps...
Step 2.1.1.1.2.1
Multiply -44 by 22.
x=3-9-8-52(2)x=39852(2)
Step 2.1.1.1.2.2
Multiply -88 by -55.
x=3-9+402(2)x=39+402(2)
x=3-9+402(2)x=39+402(2)
Step 2.1.1.1.3
Add 99 and 4040.
x=3-492(2)x=3492(2)
Step 2.1.1.1.4
Rewrite 4949 as 7272.
x=3-722(2)x=3722(2)
Step 2.1.1.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=3-172(2)x=3172(2)
Step 2.1.1.1.6
Multiply -11 by 77.
x=3-72(2)x=372(2)
Step 2.1.1.1.7
Subtract 77 from 33.
x=-42(2)x=42(2)
x=-42(2)x=42(2)
Step 2.1.1.2
Simplify the expression.
Tap for more steps...
Step 2.1.1.2.1
Multiply 22 by 22.
x=-44x=44
Step 2.1.1.2.2
Divide -44 by 44.
x=-1x=1
x=-1x=1
x=-1x=1
x=-1x=1
Step 2.2
Add 11 to both sides of the equation.
x+1=0x+1=0
x+1=0x+1=0
Step 3
Subtract 11 from both sides of the equation.
x=-1x=1
 [x2  12  π  xdx ]  x2  12  π  xdx