Enter a problem...
Algebra Examples
3+x-2x-3≤4
Step 1
Subtract 4 from both sides of the inequality.
3+x-2x-3-4≤0
Step 2
Step 2.1
Find the common denominator.
Step 2.1.1
Write 3 as a fraction with denominator 1.
31+x-2x-3-4≤0
Step 2.1.2
Multiply 31 by x-3x-3.
31⋅x-3x-3+x-2x-3-4≤0
Step 2.1.3
Multiply 31 by x-3x-3.
3(x-3)x-3+x-2x-3-4≤0
Step 2.1.4
Write -4 as a fraction with denominator 1.
3(x-3)x-3+x-2x-3+-41≤0
Step 2.1.5
Multiply -41 by x-3x-3.
3(x-3)x-3+x-2x-3+-41⋅x-3x-3≤0
Step 2.1.6
Multiply -41 by x-3x-3.
3(x-3)x-3+x-2x-3+-4(x-3)x-3≤0
3(x-3)x-3+x-2x-3+-4(x-3)x-3≤0
Step 2.2
Combine the numerators over the common denominator.
3(x-3)+x-2-4(x-3)x-3≤0
Step 2.3
Simplify each term.
Step 2.3.1
Apply the distributive property.
3x+3⋅-3+x-2-4(x-3)x-3≤0
Step 2.3.2
Multiply 3 by -3.
3x-9+x-2-4(x-3)x-3≤0
Step 2.3.3
Apply the distributive property.
3x-9+x-2-4x-4⋅-3x-3≤0
Step 2.3.4
Multiply -4 by -3.
3x-9+x-2-4x+12x-3≤0
3x-9+x-2-4x+12x-3≤0
Step 2.4
Add 3x and x.
4x-9-2-4x+12x-3≤0
Step 2.5
Combine the opposite terms in 4x-9-2-4x+12.
Step 2.5.1
Subtract 4x from 4x.
0-9-2+12x-3≤0
Step 2.5.2
Subtract 9 from 0.
-9-2+12x-3≤0
-9-2+12x-3≤0
Step 2.6
Subtract 2 from -9.
-11+12x-3≤0
Step 2.7
Add -11 and 12.
1x-3≤0
1x-3≤0
Step 3
Find all the values where the expression switches from negative to positive by setting each factor equal to 0 and solving.
x-3=0
Step 4
Add 3 to both sides of the equation.
x=3
Step 5
Step 5.1
Set the denominator in 1x-3 equal to 0 to find where the expression is undefined.
x-3=0
Step 5.2
Add 3 to both sides of the equation.
x=3
Step 5.3
The domain is all values of x that make the expression defined.
(-∞,3)∪(3,∞)
(-∞,3)∪(3,∞)
Step 6
The solution consists of all of the true intervals.
x<3
Step 7
The result can be shown in multiple forms.
Inequality Form:
x<3
Interval Notation:
(-∞,3)
Step 8